Пространственная автокорреляция (Global Moran's I) (Пространственная статистика)

Уровень лицензии:BasicStandardAdvanced

Краткая информация

Измеряет пространственную автокорреляцию на основе местоположений пространственных объектов и атрибутивных значений, используя статистику общего индекса I Морана.

Доступ к результатам этого инструмента (в том числе дополнительному PDF-файлу отчета) можно получить в окне Результаты (Results). Если отключить фоновую обработку, результаты также будут показаны в диалоговом окне Ход процесса (Progress).

Более подробно о том, как работает Пространственная автокорреляция (Глобальный индекс Морана I)

Рисунок

Иллюстрация общего индекса I Морана

Использование

Синтаксис

SpatialAutocorrelation_stats (Input_Feature_Class, Input_Field, {Generate_Report}, Conceptualization_of_Spatial_Relationships, Distance_Method, Standardization, {Distance_Band_or_Threshold_Distance}, {Weights_Matrix_File})
ПараметрОбъяснениеТип данных
Input_Feature_Class

Класс объектов, для которого будет рассчитываться пространственная автокорреляция.

Feature Layer
Input_Field

Числовое поле, используемое в оценке пространственной автокорреляции.

Field
Generate_Report
(дополнительно)
  • NO_REPORTРезультаты не будут представлены в графической форме. Это значение используется по умолчанию.
  • GENERATE_REPORTГрафическая сводка будет представлена в формате HTML-файла.
Boolean
Conceptualization_of_Spatial_Relationships

Определяет, как концептуализированы пространственные отношения между объектами.

  • INVERSE_DISTANCEБлизко расположенные соседние объекты оказывают большее влияние на вычисления для целевого объекта, нежели удаленные объекты.
  • INVERSE_DISTANCE_SQUAREDТо же самое, что и INVERSE_DISTANCE, только угол наклона острее, влияние объектов уменьшается быстрее и только ближайшие соседи окажут существенное влияние на вычисления для рассматриваемого объекта.
  • FIXED_DISTANCE_BANDКаждый объект анализируется в контексте соседних объектов. Соседние объекты в пределах указанного критического расстояния получают вес 1 и влияют на расчеты для целевого объекта. Соседние объекты за пределами указанного критического расстояния получают вес 0 и не оказывают влияния на расчеты для целевого объекта.
  • ZONE_OF_INDIFFERENCEОбъекты в пределах указанного критического расстояния получают вес 1 и влияют на расчеты для целевого объекта. Как только критическое расстояние превышено, веса (и влияние соседнего объекта на расчеты целевого объекта) начинают уменьшаться с расстоянием.
  • CONTIGUITY_EDGES_ONLYТолько соседние полигональные объекты, которые имеют смежную границу или перекрываются, повлияют на расчеты для целевого полигонального объекта.
  • CONTIGUITY_EDGES_CORNERSПолигональные объекты, которые имеют общую границу, общий узел или перекрываются, повлияют на расчеты для целевого полигонального объекта.
  • GET_SPATIAL_WEIGHTS_FROM_FILEПространственные отношения определены в файле пространственных весов. Путь к файлу с пространственными весами указан в параметре файла Матрицы весов.
String
Distance_Method

Определяет, как рассчитываются расстояния от одного объекта до соседнего объекта.

  • EUCLIDEAN_DISTANCEРасстояние по прямой линии между двумя точками (как ворона летает)
  • MANHATTAN_DISTANCEРасстояние между двумя точками, измеренное вдоль осей (городских кварталов); рассчитывается суммированием абсолютных разностей между координатами х и у
String
Standardization

Нормализация ряда рекомендуется, независимо от того, распределены ли объекты потенциально предвзято в зависимости от дизайна примера или от установленной схемы агрегации.

  • NONEНормализация ряда пространственных весов не применяется.
  • ROWПространственные веса нормализуются; каждый вес делится на его сумму ряда (сумму весов всех соседних объектов).
String
Distance_Band_or_Threshold_Distance
(дополнительно)

Определяет пороговое значение расстояния для параметров Обратное расстояние и Фиксированное расстояние. Объекты, расположенные вне указанной области, игнорируются при анализе этого объекта. Однако для Зоны индифферентности, влияние объектов, расположенных вне приведенного расстояния сокращается с расстоянием, в то время как влияние тех объектов, которые располагаются в пределах порогового расстояния, распределяется равномерно. Введенное значение расстояния должно соответствовать выходной системе координат.

При использовании концептуализации Обратных расстояний для вычисления пространственных отношений, значение 0 обозначает, что пороговое расстояние не применялось; когда данный параметр остается пустым, пороговое значение по умолчанию рассчитывается и применяется при анализе. Значение по умолчанию – это Евклидово расстояние, которое гарантирует каждому объекту как минимум 1 соседа.

Этот параметр не эффективен, когда выбраны концептуализации Близость полигонов или Получить пространственные веса из файла.

Double
Weights_Matrix_File
(дополнительно)

Путь к файлу, который содержит веса, определяющие пространственные и, возможно, временные отношения между объектами.

File

Пример кода

SpatialAutocorrelation (пространственная автокорреляция), пример 1 (окно Python)

Следующий скрипт окна Python является примером использования инструмента SpatialAutocorrelation (ПространственнаяАвтокорреляция).

import arcpy
arcpy.env.workspace = r"c:\data"
arcpy.SpatialAutocorrelation_stats("olsResults.shp", "Residual","NO_REPORT", 
                                   "GET_SPATIAL_WEIGHTS_FROM_FILE","EUCLIDEAN DISTANCE", 
                                   "NONE", "#","euclidean6Neighs.swm")
SpatialAutocorrelation (ПространственнаяАвтокорреляция), пример 2 (автономный скрипт Python)

Следующий автономный скрипт Python является примером использования инструмента SpatialAutocorrelation (ПространственнаяАвтокорреляция).

# Analyze the growth of regional per capita incomes in US
# Counties from 1969 -- 2002 using Ordinary Least Squares Regression

# Import system modules
import arcpy

# Set the geoprocessor object property to overwrite existing outputs
arcpy.gp.overwriteOutput = True

# Local variables...
workspace = r"C:\Data"

try:
    # Set the current workspace (to avoid having to specify the full path to the feature classes each time)
    arcpy.workspace = workspace

    # Growth as a function of {log of starting income, dummy for South
    # counties, interaction term for South counties, population density}
    # Process: Ordinary Least Squares... 
    ols = arcpy.OrdinaryLeastSquares_stats("USCounties.shp", "MYID", 
                        "olsResults.shp", "GROWTH",
                        "LOGPCR69;SOUTH;LPCR_SOUTH;PopDen69",
                        "olsCoefTab.dbf",
                        "olsDiagTab.dbf")

    # Create Spatial Weights Matrix (Can be based off input or output FC)
    # Process: Generate Spatial Weights Matrix... 
    swm = arcpy.GenerateSpatialWeightsMatrix_stats("USCounties.shp", "MYID",
                        "euclidean6Neighs.swm",
                        "K_NEAREST_NEIGHBORS",
                        "#", "#", "#", 6) 
                        

    # Calculate Moran's I Index of Spatial Autocorrelation for 
    # OLS Residuals using a SWM File.  
    # Process: Spatial Autocorrelation (Morans I)...      
    moransI = arcpy.SpatialAutocorrelation_stats("olsResults.shp", "Residual",
                        "NO_REPORT", "GET_SPATIAL_WEIGHTS_FROM_FILE", 
                        "EUCLIDEAN_DISTANCE", "NONE", "#", 
                        "euclidean6Neighs.swm")

except:
    # If an error occurred when running the tool, print out the error message.
    print arcpy.GetMessages()

Параметры среды

Выходная система координат (Output Coordinate System)

До начала анализа геометрия пространственных объектов проецируется в Выходную систему координат. Во всех математических вычислениях учитывается пространственная привязка Выходной системы координат. Если выходная система координат выражена в градусах, минутах и секундах, то геодезические расстояния рассчитываются с помощью хордовых расстояний.

Связанные темы

Информация о лицензировании

ArcGIS for Desktop Basic: Да
ArcGIS for Desktop Standard: Да
ArcGIS for Desktop Advanced: Да
5/10/2014