Пространственная автокорреляция (Global Moran's I) (Пространственная статистика)
Краткая информация
Измеряет пространственную автокорреляцию на основе местоположений пространственных объектов и атрибутивных значений, используя статистику общего индекса I Морана.
Доступ к результатам этого инструмента (в том числе дополнительному PDF-файлу отчета) можно получить в окне Результаты (Results). Если отключить фоновую обработку, результаты также будут показаны в диалоговом окне Ход процесса (Progress).
Более подробно о том, как работает Пространственная автокорреляция (Глобальный индекс Морана I)
Рисунок
Использование
-
Инструмент Пространственная автокорреляция (Spatial Autocorrelation) возвращает пять значений: Индекс I Морана (Moran's I Index), Ожидаемый индекс (Expected Index), Дисперсия (Variance), z-оценка (z-score) и p-значение (p-value). Эти значения доступны в окне результатов и также передаются в качестве производных выходных данных для потенциального использования в моделях и скриптах. Дополнительно, этот инструмент создаст HTML-файл с графическим представлением результатов. Если дважды щелкнуть HTML-файл в окне результатов, данный HTML-файл откроется в установленном по умолчанию браузере. Если щелкнуть правой кнопкой мыши запись Сообщения (Messages) в окне Результаты (Results) и выбрать Вид (View), результаты можно будет просмотреть в диалоговом окне Сообщение (Message). Если инструмент будет работать на переднем плане, выходные значения также будут показаны в диалоговом окне работы инструмента.
Примечание:- Если данный инструмент является частью пользовательского инструмента моделирования, HTML-ссылка появится в окне Результаты (Results) только в том случае, если перед запуском инструмента это было задано в параметрах модели.
- Для лучшего отображения графики HTML, установите разрешение вашего монитора 96 точек на дюйм.
-
Исходя из предложенного набора объектов и связанных с ними атрибутов, этот инструмент оценивает, является ли модель сгруппированной (кластерной), рассредоточенной (дисперсионной) или случайной. Когда z-оценка или p-значение указывают на статистическую значимость, положительный индекс Морана I свидетельствует о тенденции к кластеризации, в то время как отрицательные значения индекса Морана говорят о тенденции к дисперсному распределению объектов (явлений).
-
Этот инструмент вычисляет z-оценку и p-значение, по которым принимается решение об отклонении нулевой гипотезы. В этом случае, нулевая гипотеза утверждает, что значения объектов случайно распределены по области изучения.
-
z-оценка основана на вычислении гипотезы нулевой рандомизации. Дополнительные сведения о z-оценке см. в разделе Что такое z-оценка? Что такое p-значение?
-
Входное поле (Input Field) должно содержать разные значения. Для математических расчетов, выполняемых в рамках этих статистических операций, требуется, чтобы исходные переменные были разными. Например, анализ не будет выполняться, если все входящие значения равны 1. Если вы хотите использовать данный инструмент для анализа пространственных закономерностей случайных данных, попробуйте агрегировать ваши случайные данные. Для анализа пространственных закономерностей случайных данных может также использоваться инструмент Оптимизированный анализ горячих точек (Optimized Hot Spot Analysis).
Примечание:Инцидентными данными являются точки, представляющие события (преступление, дорожно-транспортное происшествие) или объекты (деревья, магазины), по отношению к которым ваше внимание концентрируется скорее на их наличии или отсутствии, чем на атрибутах, свойственных каждой такой точке.
Когда Входной класс объектов (Input Feature Class) не имеет проекции (т.е. когда координаты заданы в градусах, минутах и секундах), или когда в качестве выходной системы координат (output coordinate system) используется Географическая система координат (Geographic Coordinate System), расстояния в этих случаях будут рассчитываться с помощью хордовых измерений. Измерения хордовых расстояний применяются постольку, поскольку они могут быть быстро вычислены и дают очень хорошие оценки истинных геодезических расстояний, по крайней мере для точек, расстояние между которыми в пределах порядка тридцати градусов. В основе хордовых расстояний лежит скорее сфероид, чем форма сплющенного у полюсов эллипсоида Земли. Если взять две любые точки на поверхности Земли, то хордовым расстоянием между ними будет длина прямой линии, проходящей через трехмерное тело Земли и соединяющей эти две точки. Хордовые расстояния выражаются в метрах.
Внимание:Следует обязательно производить проецирование своих данных, если область исследования превышает 30 градусов. Хордовые расстояния не обеспечивают точных оценок геодезических расстояний, превышающих 30 градусов.
Когда при анализе используются хордовые расстояния, параметр Диапазон расстояний или пороговое расстояние (Distance Band or Threshold Distance), если он указывается, должен быть выражен в метрах.
В более ранних версиях, чем ArcGIS 10.2.1, вы бы увидели предупреждение о том, что выбранные вами параметры и системные настройки предполагают проведение вычислений на основе географических координат (градусы, минуты, секунды). Увидев это предупреждение, необходимо было произвести проецирование данных в Систему координат проекции для того, чтобы вычисление расстояний было точным. Однако, начиная с версии 10.2.1, этот инструмент рассчитывает хордовые расстояния для всех случаев, когда требуются вычисления в географической системе координат.
Внимание:Из-за этого изменения имеется небольшая вероятность того, что вам потребуется изменить модели с участием этого инструмента, если эти модели были созданы до выхода версии ArcGIS 10.2.1 и если в эти модели включены жестко-запрограммированные значения параметров Географической системы координат (Geographic Coordinate System). К примеру, если параметр расстояния установлен на что-то вроде 0,0025 градуса, то вам потребуется конвертировать это значение из градусов в метры и заново сохранить свою модель.
Этот инструмент при необходимости создает HTML-файл со сводным представлением результатов. HTML-файл не отображается автоматически в окне каталога. Если вы хотите, чтобы HTML-файлы отображались в окне Каталога, откройте приложение ArcCatalog, выберите опцию меню Настройка (Customize), щелкните Опции ArcCatalog (ArcCatalog Options) и выберите закладку Типы файлов (File Types). Нажмите кнопку Новый тип (New Type) и укажите HTML для параметра Расширение файла (File Extension).
-
Для линейных или полигональных объектов, при расчете расстояний используются центроиды. Для мультиточек, полилиний или полигонов, состоящих их нескольких частей, центроид вычисляется с использованием средневзвешенного центра всех частей объекта. При определении весов точечные объекты имеют равный вес (1). Для линейных объектов это длина сегмента. Для полигональных – площадь.
-
Выбор параметра Определение пространственных взаимоотношений (Conceptualization of Spatial Relationships) должен отражать внутренние отношения между пространственными объектами, которые вы анализируете. Чем более точно вы сможете смоделировать взаимодействие пространственных объектов в пространстве, тем более точные результаты вы получите. Рекомендации см. в разделе Выбор Концептуализации пространственных отношений: рекомендации. Ниже приводится несколько дополнительных советов:
- FIXED_DISTANCE_BAND
Значение по умолчанию для параметра Диапазон расстояний или пороговое расстояние (Distance Band or Threshold Distance) гарантирует, что каждый объект имеет, по крайней мере, одного соседа, и это важно. Но часто значение, заданное по умолчанию, не будет наиболее подходящим расстоянием для вашего анализа. В разделе Выбор фиксированного расстояния приведены стратегии, которые помогут определить значение диапазона расстояний, подходящее для вашего анализа.
- INVERSE_DISTANCE или INVERSE_DISTANCE_SQUARED
Когда для параметра Диапазон расстояний или пороговое расстояние (Distance Band or Threshold Distance) указано значение 0, все объекты считаются соседями всех других объектов. Когда этот параметр остается пустым, применяется пороговое значение по умолчанию.
Веса для расстояний менее 1 становятся не стабильны после обращения. Следовательно, при взвешивании для объектов, разделенных менее чем одной единицей расстояния, получают вес 1.
При использовании опции обратного расстояния (INVERSE_DISTANCE, INVERSE_DISTANCE_SQUARED, or ZONE_OF_INDIFFERENCE) любым двум совпадающим точкам придается значение веса 1 во избежание деления на 0. Это будет гарантировать, что объекты не исключены из анализа.
- FIXED_DISTANCE_BAND
-
Для параметра Определение пространственных взаимоотношений (Conceptualization of Spatial Relationships) при использовании инструментов Построить матрицу пространственных весов или Построить матрицу пространственных весов для сети доступны дополнительные опции, в том числе пространственно-временные отношения. Чтобы эффективно воспользоваться этими дополнительными опциями, с помощью одного из этих инструментов создайте файл с матрицей пространственных весов до выполнения анализа, выберите значение GET_SPATIAL_WEIGHTS_FROM_FILE для параметра Определение пространственных взаимоотношений (Conceptualization of Spatial Relationships), а для параметра Файл матрицы весов (Weights Matrix File) задайте путь к файлу с пространственными весами, который вы создали.
-
Слои карты можно использовать для определения Входного класса объектов (Input Feature Class). Если в слое есть выборка, только выбранные объекты будут включены в анализ.
Если добавлен Файл матрицы весов (Weights Matrix File) с расширением SWM, этот инструмент предполагает получения файла матрицы весов, созданного либо с помощью инструмента Построить матрицу пространственных весов (Generate Spatial Weights Matrix), либо Построить матрицу пространственных весов для сети (Generate Network Spatial Weights); в противном случае инструмент ожидает файл матрицы весов в формате ASCII (ASCII-formatted spatial weights matrix file). В некоторых случаях, поведение различно в зависимости от типа использованной матрицы весов:
- ASCII-файлы с матрицей пространственных весов:
- Веса используются без изменений. Отсутствующие отношения объект к объекту рассматриваются как нули.
- Если веса нормализованы, то вероятнее всего, что результаты будут непригодны для анализа выбранного набора. Если вам нужно выполнить анализ выбранного набора данных, конвертируйте ASCII-файл с матрицей весов в SWM-файл посредством перенесения данных ASCII-файла в таблицу и используя опцию CONVERT_TABLE инструмента Построить матрицу пространственных весов (Generate Spatial Weights Matrix).
- Матрица пространственных весов в формате SWM:
- Если веса уже были нормализованы, то они будут нормализованы вновь для выбранного набора данных. В противном случае они будут использоваться без изменений.
- ASCII-файлы с матрицей пространственных весов:
Для выполнения анализа с ASCII-файлом с матрицей пространственных весов требуется большой объем памяти. При анализе более 5000 объектов ASCII-файл с матрицей пространственных весов следует конвертировать в SWM-файл. Сначала вы вставляете ваш ASCII-файл с весами в форматированную таблицу (например, с помощью Excel). Затем запускаете инструмент Построить матрицу пространственных весов, задав значение CONVERT_TABLE для параметра Определение пространственных взаимоотношений (Conceptualization of Spatial Relationships). В результате будет создан файл формата SWM с матрицей пространственных весов.
Для полигональных объектов для параметра Стандартизация строк (Row Standardization) практически всегда необходимо выбирать значение Строка (Row). Нормализация ряда (Row Standardization) нивелирует отклонение в ситуациях, когда количество соседей каждого объекта является функцией агрегирования или выборки, нежели отражением реального пространственного распределения анализируемой переменной.
-
Дополнительную информацию о параметрах инструмента см. в справочной статье Моделирование пространственных отношений.
В ArcGIS 10 опция графического вывода результатов больше не является автоматической. Взамен этого, создается HTML файл, содержащий результаты. Чтобы просмотреть результаты, необходимо дважды щелкнуть HTML-файл в окне результатов. Возможно, потребуется перестроить пользовательские скрипты или инструменты моделирования, использующие этот инструмент, если они созданы в версии ArcGIS более ранней, чем версия 10. Чтобы модифицировать такие инструменты, откройте их, отключите опцию Отображать результаты графически (Display Results Graphically) и сохраните заново.
Во время работы инструмента может обнаружиться нехватка памяти. Так обычно получается, когда вы выбираете Определение пространственных взаимоотношений (Conceptualization of Spatial Relationships) и Диапазон расстояний или Пороговое расстояние (Distance Band or Threshold Distance), что приводит к тому, что у объектов очень много соседей. Обычно не требуется задавать пространственные отношения, в которых у каждого объекта имеется несколько тысяч соседей. Вы хотите, чтобы все объекты имели как минимум 1 соседа и почти все объекты имели как минимум 8 соседей.
При использовании шейп-файлов, помните, что в них нельзя хранить нулевые (null) значения. Инструменты или другие процедуры, создающие шейп-файлы из прочих входных данных, могут хранить значения NULL в виде 0 или оперировать ими как нулем. В некоторых случаях нули в шейп-файлах хранятся как очень маленькие отрицательные числа. Это может привести к неожиданным результатам. Дополнительные сведения см. в разделе Рекомендации по геообработке выходных данных шейп-файла.
Синтаксис
Параметр | Объяснение | Тип данных |
Input_Feature_Class |
Класс объектов, для которого будет рассчитываться пространственная автокорреляция. | Feature Layer |
Input_Field |
Числовое поле, используемое в оценке пространственной автокорреляции. | Field |
Generate_Report (дополнительно) |
| Boolean |
Conceptualization_of_Spatial_Relationships |
Определяет, как концептуализированы пространственные отношения между объектами.
| String |
Distance_Method |
Определяет, как рассчитываются расстояния от одного объекта до соседнего объекта.
| String |
Standardization |
Нормализация ряда рекомендуется, независимо от того, распределены ли объекты потенциально предвзято в зависимости от дизайна примера или от установленной схемы агрегации.
| String |
Distance_Band_or_Threshold_Distance (дополнительно) |
Определяет пороговое значение расстояния для параметров Обратное расстояние и Фиксированное расстояние. Объекты, расположенные вне указанной области, игнорируются при анализе этого объекта. Однако для Зоны индифферентности, влияние объектов, расположенных вне приведенного расстояния сокращается с расстоянием, в то время как влияние тех объектов, которые располагаются в пределах порогового расстояния, распределяется равномерно. Введенное значение расстояния должно соответствовать выходной системе координат. При использовании концептуализации Обратных расстояний для вычисления пространственных отношений, значение 0 обозначает, что пороговое расстояние не применялось; когда данный параметр остается пустым, пороговое значение по умолчанию рассчитывается и применяется при анализе. Значение по умолчанию – это Евклидово расстояние, которое гарантирует каждому объекту как минимум 1 соседа. Этот параметр не эффективен, когда выбраны концептуализации Близость полигонов или Получить пространственные веса из файла. | Double |
Weights_Matrix_File (дополнительно) |
Путь к файлу, который содержит веса, определяющие пространственные и, возможно, временные отношения между объектами. | File |
Пример кода
Следующий скрипт окна Python является примером использования инструмента SpatialAutocorrelation (ПространственнаяАвтокорреляция).
import arcpy
arcpy.env.workspace = r"c:\data"
arcpy.SpatialAutocorrelation_stats("olsResults.shp", "Residual","NO_REPORT",
"GET_SPATIAL_WEIGHTS_FROM_FILE","EUCLIDEAN DISTANCE",
"NONE", "#","euclidean6Neighs.swm")
Следующий автономный скрипт Python является примером использования инструмента SpatialAutocorrelation (ПространственнаяАвтокорреляция).
# Analyze the growth of regional per capita incomes in US
# Counties from 1969 -- 2002 using Ordinary Least Squares Regression
# Import system modules
import arcpy
# Set the geoprocessor object property to overwrite existing outputs
arcpy.gp.overwriteOutput = True
# Local variables...
workspace = r"C:\Data"
try:
# Set the current workspace (to avoid having to specify the full path to the feature classes each time)
arcpy.workspace = workspace
# Growth as a function of {log of starting income, dummy for South
# counties, interaction term for South counties, population density}
# Process: Ordinary Least Squares...
ols = arcpy.OrdinaryLeastSquares_stats("USCounties.shp", "MYID",
"olsResults.shp", "GROWTH",
"LOGPCR69;SOUTH;LPCR_SOUTH;PopDen69",
"olsCoefTab.dbf",
"olsDiagTab.dbf")
# Create Spatial Weights Matrix (Can be based off input or output FC)
# Process: Generate Spatial Weights Matrix...
swm = arcpy.GenerateSpatialWeightsMatrix_stats("USCounties.shp", "MYID",
"euclidean6Neighs.swm",
"K_NEAREST_NEIGHBORS",
"#", "#", "#", 6)
# Calculate Moran's I Index of Spatial Autocorrelation for
# OLS Residuals using a SWM File.
# Process: Spatial Autocorrelation (Morans I)...
moransI = arcpy.SpatialAutocorrelation_stats("olsResults.shp", "Residual",
"NO_REPORT", "GET_SPATIAL_WEIGHTS_FROM_FILE",
"EUCLIDEAN_DISTANCE", "NONE", "#",
"euclidean6Neighs.swm")
except:
# If an error occurred when running the tool, print out the error message.
print arcpy.GetMessages()
Параметры среды
- Выходная система координат (Output Coordinate System)
До начала анализа геометрия пространственных объектов проецируется в Выходную систему координат. Во всех математических вычислениях учитывается пространственная привязка Выходной системы координат. Если выходная система координат выражена в градусах, минутах и секундах, то геодезические расстояния рассчитываются с помощью хордовых расстояний.