Среднее Ближайшее соседство (Пространственная статистика)
Резюме
Вычисляет индекс ближайшего соседства на основе среднего расстояния от каждого объекта до ближайшего к нему соседнего объекта.
Доступ к результатам этого инструмента (в том числе дополнительному PDF-файлу отчета) можно получить в окне Результаты (Results). Если отключить фоновую обработку, результаты также будут показаны в диалоговом окне Ход процесса (Progress).
Рисунок
Использование
-
Инструмент Среднее ближайшее соседство (Average Nearest Neighbor) возвращает результаты вычислений: Наблюдаемое Среднее Расстояние (Observed Mean Distance), Ожидаемое Среднее Расстояние (Expected Mean Distance), Индекс Ближайшего Соседства (Nearest Neighbor Index), z-оценка и p-значение. Эти значения доступны в окне результатов и также передаются в качестве производных выходных данных для потенциального использования в моделях и скриптах. Дополнительно, этот инструмент создаст HTML файл с графическим представлением результатов. Если дважды щелкнуть HTML-файл в окне результатов, данный HTML-файл откроется в установленном по умолчанию браузере. Если щелкнуть правой кнопкой мыши запись Сообщения (Messages) открыть окно Результаты (Results) и выбрать Вид (View), результаты можно будет просмотреть в диалоговом окне Сообщение (Message).
Примечание:- Если данный инструмент является частью пользовательского инструмента моделирования, HTML-ссылка появится в окне Результаты (Results) только в том случае, если перед запуском инструмента это было задано в параметрах модели.
- Для лучшего отображения графики HTML, установите разрешение вашего монитора 96 точек на дюйм.
-
Результаты вычислений z-оценка и р-значение являются показателями статистической значимости, опираясь на которые можно принять решение об отклонении NULL-гипотезы. Для статистической величины Среднее ближайшее соседство (Average Nearest Neighbor), NULL-гипотеза утверждает, что значения распределены хаотично.
-
Индекс Ближайшего Соседства выражается как отношение Наблюдаемого Среднего Расстояния к Ожидаемому Среднему Расстоянию. Ожидаемое расстояние - среднее расстояние между соседями в гипотетическом случайном распределении. Если индекс - меньше чем 1, распределение представляет кластеризацию; если индекс больше чем 1, имеется тенденция к дисперсии или спорным результатам.
-
Метод среднего ближайшего соседства очень чувствителен к значению области (небольшие изменения значения параметра области могут привести к значительным изменениям в результатах). Следовательно, инструмент Среднее Ближайшее Соседство является самым эффективным для того, чтобы сравнить различные особенности в фиксированной области исследования. Приведенный ниже рисунок демонстрирует классический пример, как идентично расположенные объекты могут кластеризоваться или располагаться рассеянно в зависимости от указанной области изучения.
-
Если значение параметра Область (Area) не указано, по умолчанию используется площадь минимального описывающего прямоугольника. В отличие от экстента минимальный описывающий прямоугольник может не совпадать с осями Х и У.
-
Есть особые случаи входных объектов, которые могут привести к нулевой площади минимального прямоугольника. В этих случаях маленькое значение, полученное из допуска водных координат XY, будет использоваться, чтобы создать минимальный прямоугольник. Например, если все объекты совпадают (то есть, все имеют те же самые X и Y координаты), в вычислениях будет использоваться область для очень маленького квадратного многоугольника вокруг единственного местоположения. Другой пример — если все объекты были выровнены идеально (например, 3 точки на прямой линии), в вычислениях будет использоваться область прямоугольника с очень маленькой шириной вокруг объектов. Определять значение Площади (Area) лучше всего с помощью инструмента Среднее Ближайшее Соседство (Average Nearest Neighbor).
-
Хотя этот инструмент работает с полигональными или линейными данными, он наилучшим образом подходит для событий, случаев и других точечных данных пространственных объектов. Для линейных или полигональных объектов в расчетах используются точные геометрические центроиды для каждого пространственного объекта. Для мультиточек, полилиний или полигонов, состоящих их нескольких частей, центроиды рассчитываются как средневзвешенный центр всех частей объекта. При определении весов, точечные объекты имеют равный вес (1), для линейных объектов учитывается длина сегмента, для полигональных - площадь.
Этот инструмент при необходимости создает HTML-файл со сводным представлением результатов. HTML-файл не отображается автоматически в окне каталога. Если требуется показать HTML-файлы в окне каталога, откройте приложение ArcCatalog, выберите опцию меню Настройка (Customize), щелкните Опции ArcCatalog (ArcCatalog Options) и выберите вкладку Типы файлов (File Types). Нажмите кнопку Новый тип (New Type) и укажите HTML для параметра Расширение файла (File Extension).
-
В расчетах, основанных на Евклидовом или Манхэттенском расстояниях, необходимо использовать данные, спроецированные на плоскость, для точного измерения расстояний.
-
Слои карты можно использовать для определения Входного класса объектов (Input Feature Class). Если в слое есть выборка, только выбранные объекты будут включены в анализ.
В ArcGIS 10 опция графического вывода результатов больше не является автоматической. Взамен этого, создается HTML файл, содержащий результаты. Чтобы просмотреть результаты, необходимо дважды щелкнуть HTML-файл в окне результатов. Возможно, потребуется перестроить пользовательские скрипты или инструменты моделирования, использующие этот инструмент, если они были созданы в версии ArcGIS более ранней, чем версия 10. Чтобы модифицировать такие инструменты, откройте их, отключите опцию Отображать результаты графически (Display Results Graphically) и сохраните заново.
При использовании шейп-файлов, помните, что в них нельзя хранить нулевые (null) значения. Инструменты или другие процедуры, создающие шейп-файлы из прочих входных данных, могут хранить значения NULL в виде 0 или оперировать ими как нулем. В некоторых случаях нули в шейп-файлах хранятся как очень маленькие отрицательные числа. Это может привести к неожиданным результатам. Дополнительные сведения см. в разделе Рекомендации по геообработке выходных данных шейп-файла.
Синтаксис
Параметр | Объяснение | Тип данных |
Input_Feature_Class |
Класс пространственных объектов, как правило, точечный класс объектов, для которого будет вычислено расстояние среднего ближайшего соседства. | Feature Layer |
Distance_Method |
Определяет, как рассчитываются расстояния от одного объекта до соседнего объекта.
| String |
Generate_Report (дополнительно) |
| Boolean |
Area (дополнительно) |
Числовое поле, показывающее размер области изучения. Значение по умолчанию - область минимального прямоугольника, который охватил бы все объекты (или все отобранные объекты). Единицы должны совпадать с выходной системой координат. | Double |
Пример кода
Следующий скрипт, представленный в окне Python, демонстрирует, как использовать инструмент СреднееБлижайшееСоседство (AverageNearestNeighbor).
import arcpy
arcpy.env.workspace = r"C:\data"
arcpy.AverageNearestNeighbor_stats("burglaries.shp", "EUCLIDEAN_DISTANCE", "NO_REPORT", "#")
Следующий автономный Python скрипт демонстрирует, как использовать инструмент СреднееБлижайшееСоседство (AverageNearestNeighbor).
# Analyze crime data to determine if spatial patterns are statistically significant
# Import system modules
import arcpy
# Local variables...
workspace = "C:/data"
crime_data = "burglaries.shp"
try:
# Set the current workspace (to avoid having to specify the full path to the feature classes each time)
arcpy.env.workspace = workspace
# Obtain Nearest Neighbor Ratio and z-score
# Process: Average Nearest Neighbor...
nn_output = arcpy.AverageNearestNeighbor_stats(crime_data, "EUCLIDEAN_DISTANCE", "NO_REPORT", "#")
# Create list of Average Nearest Neighbor output values by splitting the result object
nn_values = nn_output.split(";")
print "The nearest neighbor index is: " + nn_values[0]
print "The z-score of the nearest neighbor index is: " + nn_values[1]
print "The p-value of the nearest neighbor index is: " + nn_values[2]
print "The expected mean distance is: " + nn_values[3]
print "The observed mean distance is: " + nn_values[4]
print "The path of the HTML report: " + nn_values[5]
except:
# If an error occurred when running the tool, print out the error message.
print arcpy.GetMessages()
Параметры среды
- Выходная система координат (Output Coordinate System)
До начала анализа геометрия пространственных объектов проецируется в Выходную систему координат (Output Coordinate System). Во всех математических вычислениях учитывается пространственная привязка Выходной системы координат (Output Coordinate System).