Rayonnement solaire ponctuel (Spatial Analyst)
Récapitulatif
Détermine le rayonnement solaire entrant pour des emplacements spécifiques dans une classe d'entités ponctuelles ou dans une table d'emplacements
Utilisation
-
Les emplacements en entrée peuvent correspondre à une classe d'entités ou à une table. La table peut être une table INFO, un fichier .dbf, une table Access ou un fichier de table texte.
-
Lors de l'entrée d'emplacements par le biais d'une table, une liste d'emplacements doit être spécifiée avec des coordonnées x,y. Si vous utilisez un fichier de coordonnées, chaque ligne doit contenir une paire x,y séparée par un espace ou une tabulation. En voici un exemple :
X Y 325541.218750 4314768.5 325169.250000 4313907.0 325874.031250 4313134.0 325825.093750 4314181.5
Vous pouvez également spécifier une pente (degrés) et une exposition dans la table d'emplacements. Avec les coordonnées x,y, le fichier doit contenir les valeurs de pente et d'exposition pour chaque emplacement. En voici un exemple :
x y slope aspect 325541.218750 4314768.5 15.84516716 310.2363586 325169.250000 4313907.0 39.39801788 2.03503442 325874.031250 4313134.0 16.10847282 223.8308563 325825.093750 4314181.5 8.89850712 205.2011261
-
Dans le cas de configurations sur plusieurs jours, la plage maximale de jours est égale à une année (365 jours, ou 366 pour les années bissextiles). Si le numéro associé au jour de début est plus grand que celui associé au jour de fin, les calculs de temps se poursuivent sur l'année suivante.
Par exemple, [jour de début, jour de fin] = [365, 31], signifie du 31 décembre au 31 janvier de l'année suivante. Autre exemple de [1, 2] : le temps couvre le premier jour à partir de 0 heure (le 1er janvier) jusqu'à minuit (le 2 janvier). Le jour de début et le jour de fin ne peuvent pas être identiques.
La valeur de l'année de la configuration de temps permet de déterminer une année bissextile. Elle n'a aucune autre influence sur l'analyse du rayonnement solaire, car les calculs correspondent à une fonction de la période de temps déterminée par les jours juliens.
-
Pour les configurations à la journée, la plage maximale de temps est égale à une journée, soit 24 heures. Les calculs ne s'effectuent pas sur plusieurs jours, par exemple de midi à midi le jour suivant. L'heure de début doit être inférieure à l'heure de fin.
-
L'utilisation d'un facteur Z est indispensable pour corriger les calculs lorsque les unités z de surface sont exprimées dans des unités différentes de celles des unités terrestres x,y. Pour obtenir des résultats précis, les unités z doivent être identiques aux unités terrestres x,y. Si les unités diffèrent, utilisez un facteur z pour convertir les unités z en unités x,y. Par exemple, si les unités x,y sont exprimées en mètres, et que l'unité z est exprimée en pieds, vous pouvez indiquer un facteur z égal à 0,3048 pour convertir les pieds en mètres.
-
Il est préférable que les données appartiennent à un système de coordonnées projetées (où l'unité est le mètre). Si vous choisissez d'exécuter l'analyse avec un système de coordonnées sphériques, vous devez spécifier un facteur z approprié pour cette latitude. Voici quelques-uns des facteurs z pouvant être utilisés si les unités x,y sont en degrés décimaux et les unités z en mètres :
Latitude Z-factor 0 0.00000898 10 0.00000912 20 0.00000956 30 0.00001036 40 0.00001171 50 0.00001395 60 0.00001792 70 0.00002619 80 0.00005156
-
Le décalage de hauteur doit être spécifié uniquement en mètres.
-
La latitude de la surface du site (unités : degré décimal, positives pour l'hémisphère nord et négatives pour l'hémisphère sud) est utilisée dans divers calculs, tels que ceux de la déclinaison solaire et de la position solaire. Etant donné que l'analyse solaire est conçue pour les échelles de paysage et les échelles locales, vous pouvez utiliser une valeur de latitude unique pour l'ensemble du modèle MNA. Dans le cas de régions géographiques plus vastes, il convient de diviser la zone d'étude en zones de différentes latitudes.
-
Pour les rasters de surface en entrée contenant une référence spatiale, la latitude moyenne est calculée automatiquement. Dans le cas contraire, la latitude est égale à 45 degrés par défaut. Lors de l'utilisation d'une couche en entrée, la référence spatiale du bloc de données est utilisée.
-
La taille du raster de diffusion correspond à la résolution des rasters champ de vision, carte du ciel et carte d'ensoleillement utilisés dans le calcul du rayonnement (unités : nombre de cellules par côté). Il s'agit de représentations raster hémisphériques du ciel qui n'ont pas de système de coordonnées géographiques. Ces grilles sont carrées (même nombre de lignes et de colonnes).
Si l'augmentation de la taille du raster de diffusion augmente la précision de calcul, elle augmente aussi considérablement les temps de calcul.
-
Si le paramètre Intervalle (exprimé en jours) est petit (par exemple inférieur à 14), il vaut mieux utiliser un raster de diffusion de plus grande taille. Pendant l'analyse, la carte d'ensoleillement (déterminée par la taille du raster de diffusion) permet de représenter les positions du soleil (trajectoires) pour des périodes de temps particulières pour calculer le rayonnement direct. Dans le cas d'intervalles plus petits, si la résolution de la taille du raster de diffusion n'est pas assez grande, les trajectoires peuvent se superposer et ainsi donner des valeurs de rayonnement égales à zéro ou inférieures pour cette trajectoire. L'augmentation de la résolution donne un résultat plus précis.
-
La valeur de maximale de taille de raster de diffusion est 10 000. La valeur 200 correspond à la valeur par défaut, qui est suffisante pour des modèles MNA entiers avec des intervalles importants (par exemple, supérieurs à 14 jours). Une taille de raster de diffusion de 512 est suffisante pour effectuer des calculs aux emplacements des points pour lesquels le temps de calcul n'est pas un problème. Avec des intervalles plus petits (par exemple inférieurs à 14 jours), il est recommandé d'utiliser des valeurs plus grandes. Par exemple, pour calculer l'insolation d'un emplacement situé sur l'équateur avec un intervalle égal à 1 jour, il est préférable d'utiliser un raster de diffusion avec une taille minimale définie à 2800.
-
Sachant qu'en général, les trajectoires du soleil se chevauchent au cours d'une période de trois jours, selon la taille du raster de diffusion et le moment dans l'année, il est recommandé d'utiliser des intervalles supérieurs à 3 jours. Pour des calculs sur toute l'année avec un intervalle mensuel, l'intervalle en jours est désactivé et le programme utilise des intervalles en mois calendaires. La valeur par défaut est 14.
-
Comme le calcul du champ de vision peut demander beaucoup de travail, les angles d'horizon sont tracés uniquement pour le nombre de directions de calcul indiqué. Pour être valides, les valeurs doivent être des multiples de 8 (8, 16, 24, 32, etc.). En général, on utilise 8 ou 16 pour les surfaces à topographie douce, et 32 pour les topographies plus complexes. La valeur par défaut est 32.
-
Le nombre de directions de calcul requis dépend de la résolution du modèle MNT en entrée. En général, un MNT naturel avec une résolution de 30 mètres est suffisamment lisse pour ne nécessiter qu'un petit nombre de directions pour la plupart des situations (16 ou 32). Avec des MNT plus fins, et en particulier avec des structures artificielles incorporées dans les MNT, le nombre de directions doit augmenter. Il convient de noter que si l'augmentation du nombre de directions augmente la précision, elle augmente aussi les temps de calcul.
-
La case à cocher Créer des sorties pour chaque intervalle permet de calculer l'insolation intégrée sur une période de temps spécifiée ou l'insolation pour chaque intervalle suivant un ordre chronologique. Par exemple, pour une période fixée à une seule journée avec un intervalle d'une heure, l'activation de cette option permet de créer des valeurs d'insolation toutes les heures. Dans le cas contraire, le système calcule l'insolation intégrée pour toute la journée.
-
La case à cocher Créer des sorties pour chaque intervalle affecte le nombre d'attributs pour les entités en sortie. En cas d'activation pour une analyse du rayonnement ponctuel, la classe d'entités en sortie inclut des attributs supplémentaires (t0, t1, t2, etc.), qui indiquent des valeurs de rayonnement ou de durée pour chaque intervalle de temps (intervalle d'heures lorsque la configuration du temps est inférieure à un jour, ou intervalle de jours lorsqu'elle est de plusieurs jours).
-
La quantité de rayonnement solaire reçue au niveau du sol ne représente qu'une partie de ce qui est reçu à l'extérieur de l'atmosphère. La transmittance est une propriété de l'atmosphère exprimée en tant que rapport de l'énergie (moyenne de toutes les longueurs d'onde) qui atteint la surface terrestre et de celle reçue à la limite supérieur de l'atmosphère (extra-terrestre). La plage de valeurs est comprise entre 0 (pas de transmission) et 1 (transmission totale). En général, les valeurs observées sont 0,6 ou 0,7 dans des conditions de ciel très clair et 0,5 dans des conditions de ciel normalement clair.
La valeur d'énergie reçue à la surface de la Terre est le plus court chemin dans l'atmosphère (c'est-à-dire le soleil au zénith ou directement au-dessus de la tête) et le niveau de la mer. Pour les régions au-delà du Tropique du Capricorne et du Tropique du Cancer, le soleil ne peut jamais être exactement au zénith, même à midi. Cependant, cette valeur se rapport toujours au moment où le soleil est au zénith. Etant donné que l'algorithme corrige les effets d'altitude, la transmittance doit toujours être donnée pour le niveau de la mer.
La transmittance a une relation inverse avec le paramètre de proportion de diffusion.
Syntaxe
Paramètre | Explication | Type de données |
in_surface_raster |
Raster de surface d'altitude en entrée. | Raster Layer |
in_points_feature_or_table |
Table ou classe d'entités ponctuelles spécifiant les emplacements d'analyse du rayonnement solaire. | Feature Layer | Table View |
out_global_radiation_features |
Classe d'entités en sortie représentant le rayonnement global ou l'ensoleillement entrant total (direct + diffus) calculé pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
height_offset (Facultatif) |
Hauteur (en mètres) au-dessus de la surface MNA pour laquelle les calculs sont à effectuer. Le décalage de hauteur est appliqué à tous les emplacements en entrée. | Double |
latitude (Facultatif) |
Latitude de la surface du site. Les unités sont des degrés décimaux, avec des valeurs positives pour l'hémisphère nord et négatives pour l'hémisphère sud. Pour les rasters de surface en entrée contenant une référence spatiale, la latitude moyenne est calculée automatiquement. Dans le cas contraire, la latitude est égale à 45 degrés par défaut. | Double |
sky_size (Facultatif) |
Résolution ou taille du raster de diffusion pour les grilles d'un champ de vision, des cartes d'ensoleillement et du ciel. Les unités sont des cellules. Par défaut le système crée un raster de 200 par 200 cellules. | Long |
time_configuration (Facultatif) |
Spécifie la configuration de temps (période) utilisée pour calculer le rayonnement solaire. Les objets de la classe Temps permettent de spécifier la configuration de temps. Les différents types de configuration de temps disponibles sont les suivants : TimeWithinDay, TimeMultiDays, TimeSpecialDayset TimeWholeYear. Voici les formules associées :
Le paramètre time_configuration affiche par défaut la valeur TimeMultiDays si le paramètre start_day est défini sur 5 et end_day sur 160, pour l'année Julienne en cours. | Time configuration |
day_interval (Facultatif) |
Intervalle de temps sur l'année (unités : jours) utilisé pour calculer les secteurs du ciel pour la carte d'ensoleillement. La valeur par défaut est 14 (bihebdomadaire). | Long |
hour_interval (Facultatif) |
Intervalle de temps sur la journée (unités : heures) utilisé pour calculer les secteurs du ciel pour les cartes d'ensoleillement. La valeur par défaut est 0,5. | Double |
each_interval (Facultatif) |
Spécifie s'il faut calculer une valeur d'insolation totale unique pour tous les emplacements ou plusieurs valeurs pour l'intervalle spécifié, heure et jour.
| Boolean |
z_factor (Facultatif) |
Nombre d'unités x,y terrestres sur une unité z de surface. Le facteur z ajuste les unités de mesure des unités z lorsqu'elles sont différentes des unités x,y de la surface en entrée. Les valeurs z de la surface en entrée sont multipliées par le facteur z lors du calcul de la surface finale en sortie. Si les unités x,y et les unités z utilisent les mêmes unités de mesure, le facteur z est égal à 1. Si les valeurs x,y et les valeurs z sont exprimées dans des unités de mesure différentes, le facteur z doit être défini comme approprié, sinon les résultats sont incorrects. Par exemple, si les unités z sont des pieds et les unités x,y sont des mètres, vous devez utiliser un facteur z égal à 0,3048 pour convertir les unités z de pieds en mètres (1 pied = 0,3048 mètre). | Double |
slope_aspect_input_type (Facultatif) |
Dérivation des informations de pente et d'exposition pour analyse.
| String |
calculation_directions (Facultatif) |
Nombre de directions azimutales utilisées lors du calcul du champ de vision. Pour être valides, les valeurs doivent être des multiples de 8 (8, 16, 24, 32, etc.). La valeur par défaut de 32 directions est appropriée pour une topographie complexe. | Long |
zenith_divisions (Facultatif) |
Nombre de divisions utilisées pour créer des secteurs du ciel dans la carte du ciel. La valeur par défaut est égale à huit divisions (par rapport au zénith). Les valeurs doivent être supérieures à zéro et inférieures à la moitié de la valeur de la taille du raster de diffusion. | Long |
azimuth_divisions (Facultatif) |
Nombre de divisions utilisées pour créer des secteurs du ciel dans la carte du ciel. La valeur par défaut est égale à huit divisions (par rapport au nord). Pour être valides, les valeurs doivent être des multiples de 8, supérieures à zéro et inférieures à 160. | Long |
diffuse_model_type (Facultatif) |
Type de modèle de rayonnement diffus.
| String |
diffuse_proportion (Facultatif) |
Proportion du flux du rayonnement normal global qui est diffusé. Les valeurs sont comprises entre 0 et 1. Cette valeur doit être définie en fonction des conditions atmosphériques. La valeur par défaut est de 0,3 pour des conditions de ciel dégagé. | Double |
transmittivity (Facultatif) |
Fraction du rayonnement traversant l'atmosphère (moyennée sur toutes les longueurs d'onde). La plage de valeurs est comprise entre 0 (pas de transmission) et 1 (transmission totale). La valeur par défaut est de 0,5 pour des conditions de ciel dégagé. | Double |
out_direct_radiation_features (Facultatif) |
Classe d'entités en sortie représentant le rayonnement solaire entrant direct pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
out_diffuse_radiation_features (Facultatif) |
Classe d'entités en sortie représentant le rayonnement solaire entrant diffus pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
out_direct_duration_features (Facultatif) |
Classe d'entités en sortie représentant la durée de rayonnement solaire entrant direct. La sortie est exprimée en heures. | Feature Class |
Exemple de code
Le script de fenêtre Python ci-dessous illustre comment utiliser l'outil PointsSolarRadiation.
import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
PointsSolarRadiation("elevation", "observers.shp",
"c:/sapyexamples/output/outglobalrad1.shp", "", 35, 200,
TimeMultipleDays(2009, 91, 212), 14, 0.5,"NOINTERVAL",
1, "FROM_DEM", 32, 8, 8,"STANDARD_OVERCAST_SKY", 0.3, 0.5,
"c:/sapyexamples/output/outdirectrad1.shp",
"c:/sapyexamples/output/outdiffuserad1.shp",
"c:/sapyexamples/output/outduration1.shp")
Calcule la totalité du rayonnement solaire entrant pour des emplacements ponctuels spécifiques.
# PointsSolarRadiation_Example02.py
# Description: For all point locations, calculates total global, direct,
# diffuse and direct duration solar radiation for a whole year.
# Requirements: Spatial Analyst Extension
# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *
# Set environment settings
env.workspace = "C:/sapyexamples/data"
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")
# Set local variables
inRaster = "elevation"
inPntFC = "observers.shp"
outFeatures = "c:/sapyexamples/output/outglobal1.shp"
latitude = 35.75
skySize = 200
timeConfig = TimeMultipleDays(2009, 91, 212)
dayInterval = 14
hourInterval = 0.5
zFactor = 0.3048
calcDirections = 32
zenithDivisions = 8
azimuthDivisions = 8
diffuseProp = 0.3
transmittivity = 0.5
outDirectRad = "C:/sapyexamples/output/outdirectrad1.shp"
outDiffuseRad = "C:/sapyexamples/output/outdiffuserad1.shp"
outDirectDur = "C:/sapyexamples/output/outduration1.shp"
# Execute PointsSolarRadiation...
PointsSolarRadiation(inRaster, inPntFC, outFeatures, "", latitude, skySize,
timeConfig, dayInterval, hourInterval, "INTERVAL",
zFactor, "FROM_DEM", calcDirections, zenithDivisions,
azimuthDivisions,"STANDARD_OVERCAST_SKY", diffuseProp,
transmittivity, outDirectRad, outDiffuseRad, outDirectDur)