De topo a ráster (Spatial Analyst)

Nivel de licencia:BasicStandardAdvanced

Resumen

Interpola una superficie hidrológicamente correcta a partir de datos de punto, línea y polígono.

Más información sobre cómo funciona De topo a ráster

Uso

Sintaxis

TopoToRaster (in_topo_features, {cell_size}, {extent}, {Margin}, {minimum_z_value}, {maximum_z_value}, {enforce}, {data_type}, {maximum_iterations}, {roughness_penalty}, {discrete_error_factor}, {vertical_standard_error}, {tolerance_1}, {tolerance_2}, {out_stream_features}, {out_sink_features}, {out_diagnostic_file}, {out_parameter_file}, {profile_penalty}, {out_residual_feature}, {out_stream_cliff_error_feature}, {out_contour_error_feature})
ParámetroExplicaciónTipo de datos
in_topo_features
topo_input

La clase Topo especifica las entidades de entrada que contienen los valores z que se interpolarán en un ráster de superficie.

Hay nueve tipos de entrada de datos aceptados para la clase Topo: TopoPointElevation, TopoContour, TopoStream, TopoSink, TopoBoundary, TopoLake, TopoCliff, TopoExclusion, TopoCoast.

  • TopoPointElevation ([[inFeatures,{field}],...])

    Una clase de entidad de punto que representa elevaciones de superficie.

    El campo almacena las elevaciones de los puntos.

  • TopoContour ([[inFeatures,{field}],...])

    Una clase de entidad de línea que representa curvas de nivel de elevación.

    El campo almacena las elevaciones de las líneas de curvas de nivel.

  • TopoStream ([inFeatures,...])

    Una clase de entidad de línea de las ubicaciones de arroyos. Todos los arcos deben estar orientados apuntando aguas abajo. La clase de entidad sólo debe contener arroyos de arcos simples.

  • TopoSink ([[inFeatures,{field}],...])

    Una clase de entidad de punto que representa depresiones topográficas conocidas. De topo a ráster no intentará quitar del análisis ningún punto explícitamente identificado como sumideros.

    El campo utilizado debe almacenar la elevación del sumidero legítimo. Si se seleccionó NONE, sólo se usa la ubicación del sumidero.

  • TopoBoundary ([inFeatures,...])

    Un límite es una clase de entidad que contiene un polígono simple que representa el límite exterior del ráster de salida. Las celdas en el ráster de salida fuera de este límite serán NoData. Esta opción se puede usar para recortar áreas de agua a lo largo de líneas de costa antes de hacer el ráster de salida final.

  • TopoLake ([inFeatures,...])

    Una clase de entidad poligonal que especifica la ubicación de lagos. Todas las celdas ráster de salida dentro de un lago se asignarán al valor de elevación mínimo de todas las celdas a lo largo de la costa.

  • TopoCliff ([inFeatures,...])

    Una clase de entidad de línea de los acantilados. Las entidades de línea de acantilado deben estar orientadas de modo que el lado izquierdo de la línea esté en el lado bajo del acantilado y el lado derecho es el lado alto del acantilado.

  • TopoExclusion ([inFeatures,...])

    Una clase de entidad poligonal de las áreas en las que se deben ignorar los datos de entrada. Estos polígonos permiten la eliminación de los datos de elevación del proceso de interpolación. Generalmente, esto se utiliza para quitar datos de elevación asociados con paredes de presas y puentes. Esto permite la interpolación del valle subyacentes con estructura de drenaje conectado.

  • TopoCoast ([inFeatures,...])

    Una clase de entidad poligonal que contiene el contorno de un área costera. Las celdas en el ráster de salida final que se encuentran fuera de estos polígonos se establecen en un valor que es menor que el límite de altura mínima especificado por el usuario.

Los tipos PointElevation, Contour y Sink de entrada de entidades pueden tener un campo especificado que contiene los valores z. No hay opción de campo para los tipos de entrada Límite, Lago, Acantilado, Costa, Exclusión o Arroyo.

TopoInput
cell_size
(Opcional)

El tamaño de celda con el que se creará el ráster de salida.

Este será el valor del entorno si se establece explícitamente; de lo contrario, es el valor más bajo del ancho o de la altura de la extensión de las entidades de punto de entrada, en la referencia espacial de entrada, dividido por 250.

Analysis Cell Size
extent
(Opcional)

La clase Extensión determina la extensión para el dataset ráster de salida.

La interpolación se producirá hasta los límites x e y, y las celdas fuera de esa extensión serán NoData. Para obtener mejores resultados de interpolación a lo largo de los bordes del ráster de salida, los límites x e y deben ser más pequeños que la extensión de los datos de entrada en al menos 10 celdas de cada lado.

El formato de la clase Extensión es:

  • Extensión (XMin, YMin, XMax, YMax)

    donde:

    • XMin: la opción predeterminada es la coordenada x más pequeña de todas las entradas.
    • YMin: la opción predeterminada es la coordenada y más pequeña de todas las entradas.
    • XMax: la opción predeterminada es la coordenada x más grande de todas las entradas.
    • YMax: la opción predeterminada es la coordenada y más grande de todas las entradas.

La extensión predeterminada es la más grande de todas las extensiones de los datos de entidad de entrada.

Extent
Margin
margin
(Opcional)

Distancia en celdas para interpolar más allá de la extensión de salida especificada y el límite.

El valor debe ser mayor o igual que 0 (cero). El valor predeterminado es 20.

Si los datasets de entidades de Extent y TopoBoundary son los mismos que el límite de los datos de entrada (predeterminado), los valores interpolados a lo largo del borde del DEM no coincidirán bien con los datos DEM adyacentes. Esto se debe a que han sido interpolados utilizando la mitad de los datos que utilizan los puntos dentro del ráster, los cuales están circundados en todos los lados por datos de entrada. La opción Margin permite que se utilicen datos de entrada más allá de estos límites en la interpolación.

Long
minimum_z_value
(Opcional)

El valor z mínimo que se utilizará en la interpolación.

El valor predeterminado es 20 por ciento por debajo del valor más pequeño de todos los valores de entrada.

Double
maximum_z_value
(Opcional)

El valor z máximo que se utilizará en la interpolación.

El valor predeterminado es 20 por ciento por encima del valor más grande de todos los valores de entrada.

Double
enforce
(Opcional)

El tipo de aplicación de drenaje que se utilizará.

La opción de aplicación de drenaje se puede establecer para quitar todos todos los sumideros o depresiones de manera que pueda crearse un DEM hidrológicamente correcto. Si se han identificado explícitamente puntos de sumidero en los datos de entidad de entrada, estas depresiones no se completarán.

  • ENFORCE El algoritmo intentará quitar todos los sumideros que encuentra, ya sea si son reales o espurios. Esta es la opción predeterminada.
  • NO_ENFORCE No se completará ningún sumidero.
  • ENFORCE_WITH_SINK Los puntos identificados como sumideros en los datos de entidad de entrada representan depresiones topográficas conocidas y no se alterarán. Todo sumidero no identificado en los datos de entidad de entrada se considera espurio y el algoritmo intentará completarlo.Tener más de 8.000 sumideros espurios hace que la herramienta no funcione correctamente.
String
data_type
(Opcional)

El tipo de datos de elevación principal de los datos de entidad de entrada.

  • CONTOUR El tipo de datos de entrada principal será curvas de nivel de elevación. Esta es la opción predeterminada.
  • SPOT El tipo de entrada principal será punto.

Especificar la selección relevante optimiza el método de búsqueda utilizado durante la generación de arroyos y crestas.

String
maximum_iterations
(Opcional)

La cantidad máxima de iteraciones de interpolación.

La cantidad de iteraciones debe ser mayor que cero. Un valor predeterminado de 20 es adecuado, por lo general, para los datos de curvas de nivel y de línea.

Un valor de 30 eliminará menos sumideros. Rara vez, los valores más altos (45–50) pueden ser útiles para eliminar más sumideros o para establecer más crestas y arroyos. La iteración se detiene para cada resolución de cuadrícula cuando se ha alcanzado la cantidad máxima de iteraciones.

Long
roughness_penalty
(Opcional)

Derivada segunda cuadrada integrada como medida de rugosidad.

La penalización por rugosidad debe ser mayor o igual que cero. Si el tipo primario de datos de entrada es CONTOUR, el valor predeterminado es cero. Si el tipo primario de datos es SPOT, el valor predeterminado es 0,5. Por lo general, no se recomiendan los valores más grandes.

Double
discrete_error_factor
(Opcional)

El factor de error discreto se utiliza para ajustar la cantidad de alisado al convertir los datos de entrada en un ráster.

El valor debe ser mayor que cero. El rango normal de ajuste es de 0,5 a 2 y el valor predeterminado es 1. Un valor más pequeño resulta en un suavizado de datos menor; un valor más grande provoca un suavizado mayor.

Double
vertical_standard_error
(Opcional)

La cantidad de errores aleatorios en los valores z de los datos de entrada.

El valor debe ser mayor o igual que cero. El valor predeterminado es cero.

El error estándar vertical puede establecerse en un valor positivo pequeño si los datos tienen errores verticales (no sistemáticos) aleatorios significativos con varianza uniforme. En este caso, establezca el error estándar vertical en la desviación estándar de estos errores. Para la mayoría de los datasets de elevación, el error vertical debe establecerse en cero pero puede establecerse en un valor positivo pequeño para estabilizar la convergencia cuando se rasterizan los datos de punto con los datos de línea de corriente.

Double
tolerance_1
(Opcional)

Esta tolerancia refleja la precisión y la densidad de los puntos de elevación en relación con el drenaje de la superficie.

Para los datasets de punto, establezca la tolerancia en el error estándar de las alturas de los datos. Para los datasets de curvas de nivel, utilice la mitad del intervalo de curvas de nivel promedio.

El valor debe ser mayor o igual que cero. El valor predeterminado es 2,5 si el tipo de datos es CONTOUR y cero si el tipo de datos es SPOT.

Double
tolerance_2
(Opcional)

Esta tolerancia impide el espacio de drenaje a través de barreras altas poco realistas.

El valor debe ser mayor que cero. El valor predeterminado es 100 si el tipo de datos es CONTOUR y 200 si el tipo de datos es SPOT.

Double
out_stream_features
(Opcional)

La clase de entidad de línea de salida de las entidades de polilínea de arroyo y de las entidades de línea de cresta.

Las entidades de línea se crean al comienzo del proceso de interpolación. Proporciona la morfología general de la superficie para la interpolación. Se puede utilizar para verificar el drenaje y la morfología correctos al comparar los datos conocidos del arroyo y de la cresta.

Las entidades de polilínea se codifican de la siguiente forma:

  1. Línea de transmisión de entrada no está sobre un acantilado.
  2. Línea de transmisión de entrada sobre un acantilado (cascada).
  3. Aplicación de drenaje despejando un sumidero espurio.
  4. Línea de transmisión determinada desde la esquina de curvas de nivel.
  5. Línea de cresta determinada desde la esquina de curvas de nivel.
  6. Código no utilizado.
  7. Condiciones laterales de línea de transmisión de datos.
  8. Código no utilizado.
  9. Línea que indica grandes márgenes en datos de elevación.
Feature Class
out_sink_features
(Opcional)

La clase de entidad de punto de salida de las entidades de punto de sumidero restantes.

Estos son los sumideros que no se especificaron en los datos de entidad de entrada de sumidero y que no se limpiaron durante la aplicación de drenaje. Ajustar los valores de las tolerancias, tolerance_1 y tolerance_2, puede reducir la cantidad de sumideros restantes. A menudo, los sumideros restantes indican errores en los datos de entrada que no se pudieron resolver con el algoritmo de aplicación de drenaje. Esta puede ser una forma eficiente de detectar errores de elevación sutiles.

Feature Class
out_diagnostic_file
(Opcional)

El archivo de diagnóstico de salida que incluye todas las entradas y los parámetros utilizados y la cantidad de sumideros eliminados en cada resolución e iteración.

File
out_parameter_file
(Opcional)

El archivo de parámetros de salida que incluye todas las entradas y los parámetros utilizados, que se pueden utilizar con De topo a ráster por un archivo para ejecutar la interpolación nuevamente.

File
profile_penalty
(Opcional)

La penalización por rugosidad de la curvatura de perfil local es una penalización adaptable que se puede utilizar para sustituir en parte la curvatura total.

Puede dar buenos resultados con datos de curvas de nivel de alta calidad pero puede conducir a una inestabilidad en la convergencia con información inexacta. Establezca en 0,0 para curvatura sin perfil (el valor predeterminado), establezca en 0,5 para curvatura de perfil moderado y establezca en 0,8 para curvatura de perfil máximo. Los valores mayores que 0,8 no se recomiendan y no se deben utilizar.

Double
out_residual_feature
(Opcional)

La clase de entidad de puntos de salida de todos los residuales de elevación grandes según las escalas proporcionadas por el error de discretización local.

Todos los valores residuales en escalas mayores que 10 se deben revisar por posibles errores en los datos de entrada de arroyos y de elevación. Los valores residuales en escala grande indican conflictos entre los datos de entrada de elevación y los datos de línea de transmisión. Esos valores también pueden estar asociados con aplicaciones automáticas de drenaje deficientes. Estos conflictos se pueden resolver proporcionando datos adicionales de elevación del punto o de la línea de corriente lineal después de la primera verificación y corrección de errores en los datos de entrada existentes. Los valores residuales sin escala generalmente indican errores de elevación de entrada.

Feature Class
out_stream_cliff_error_feature
(Opcional)

La clase de entidad de puntos de salida de ubicaciones donde ocurren posibles errores en corrientes y acantilados.

Las ubicaciones donde las corrientes tienen bucles cerrados, distributarios y corrientes sobre acantilados se pueden identificar desde la clase de entidad de punto. Los acantilados con celdas vecinas inconsistentes, con lados altos y bajos del acantilado, también se indican. Este puede ser un buen indicador de acantilados con dirección incorrecta.

Los puntos se codifican de la siguiente manera:

  1. Circuito real en la red de línea de transmisión de datos.
  2. El circuito en la red de corriente según se codifica en el ráster de salida.
  3. El circuito en la red de corrientes a través de la conexión de los lagos.
  4. Punto de bifurcaciones de ríos.
  5. Transmisión en un acantilado (cataratas).
  6. Puntos que indica varios flujos de salida de corrientes de los lagos.
  7. Código no utilizado.
  8. Puntos junto a acantilados con alturas inconsistentes con dirección de acantilado.
  9. Código no utilizado.
  10. Bifurcaciones de ríos circulares eliminadas.
  11. Bifurcaciones de ríos sin corriente que fluye hacia adentro.
  12. Bifurcaciones de ríos rasterizadas en celda de salida diferentes al lugar en donde ocurren las bifurcaciones de ríos de la línea de transmisión de datos.
  13. Error al procesar las condiciones laterales: un indicador de datos de línea de transmisión muy complejos.
Feature Class
out_contour_error_feature
(Opcional)

La clase de entidad de puntos de salida de posibles errores relativos a los datos de curvas de nivel de entrada.

Curvas de nivel con inclinación en altura que excede cinco veces la desviación estándar de los valores de curvas de nivel según se representan en el ráster de salida se reportan a esta clase de entidad. Las curvas de nivel que se unen con otras curvas con una elevación diferente se etiquetan en esta clase de entidad por el código 1; esta es una señal clara de un error de etiqueta de curvas de nivel.

Feature Class

Valor de retorno

NombreExplicaciónTipo de datos
out_surface_raster

Ráster de superficie interpolado de salida.

Raster

Ejemplo de código

Ejemplo 1 de TopoToRaster (ventana de Python)

En este ejemplo se crea un ráster de superficie TIFF hidrológicamente correcta a partir de datos de punto, línea y polígono.

import arcpy
from arcpy import env  
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
outTTR = TopoToRaster([TopoPointElevation([['spots', 'spot_meter']]), 
                       TopoContour([['contours', 'spot_meter']]),
                       TopoCliff(['cliff'])], 60, 
                       "#", "#", "#", "#", "NO_ENFORCE")
outTTR.save("C:/sapyexamples/output/ttrout.tif")
Ejemplo 2 de TopoToRaster (secuencia de comandos independiente)

En este ejemplo se crea un ráster de superficie de cuadrícula hidrológicamente correcta, a partir de datos de punto, línea y polígono.

# Name: TopoToRaster_Ex_02.py
# Description: Interpolates a hydrologically correct surface 
#    from point, line, and polygon data.
# Requirements: Spatial Analyst Extension

# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *

# Set environment settings
env.workspace = "C:/sapyexamples/data"

# Set local variables
inPointElevations = TopoPointElevation([['spots.shp', 'spot_meter'], 
                                        ['spots2.shp', 'elev']])
inBoundary = TopoBoundary(['boundary.shp'])
inContours = TopoContour([['contours.shp', 'spot_meter']])
inLake = TopoLake(['lakes.shp'])
inSinks = TopoSink([['sink1.shp', 'elevation'], ['sink2.shp', 'none']])
inStream = TopoStream(['streams.shp'])
inCliff = TopoCliff(['cliff.shp'])
inCoast = TopoCoast(['coast.shp'])
inExclusion = TopoExclusion(['ignore.shp'])
                    
inFeatures = ([inPointElevations, inContours, inLake, inStream, inBoundary, inSinks, inCliff, inCoast, inExclusion])

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")

# Execute TopoToRaster
outTTR = TopoToRaster(inFeatures)

# Save the output 
outTTR.save("C:/sapyexamples/output/ttrout03")

Entornos

Temas relacionados

Información sobre licencias

ArcGIS for Desktop Basic: Requiere Spatial Analyst o 3D Analyst
ArcGIS for Desktop Standard: Requiere Spatial Analyst o 3D Analyst
ArcGIS for Desktop Advanced: Requiere Spatial Analyst o 3D Analyst
9/11/2013