ST_GeomCollection
定义
ST_GeomCollection 基于可识别的文本表示构造几何集合。
语法
Oracle
sde.st_multilinestring (wkt clob, srid integer) sde.st_multipoint (wkt clob, srid integer) sde.st_multipolygon (wkt clob, srid integer)
PostgreSQL
sde.st_multilinestring (wkt, srid integer) sde.st_multilinestring (esri_shape bytea, srid integer) sde.st_multipoint (wkt, srid integer) sde.st_multipoint (esri_shape bytea, srid integer) sde.st_multipolygon (wkt, srid integer) sde.st_multipolygon (esri_shape bytea, srid integer)
返回类型
ST_GeomCollection
示例
创建表 geomcoll_test。
CREATE TABLE geomcoll_test (id integer, geometry sde.st_geometry);
INSERT INTO geomcoll_test (id, geometry) VALUES (
1901,
sde.st_multipoint ('multipoint (1 2, 4 3, 5 6)', 0)
);
INSERT INTO geomcoll_test (id, geometry) VALUES (
1902,
sde.st_multilinestring ('multilinestring ((33 2, 34 3, 35 6),
(28 4, 29 5, 31 8, 43 12), (39 3, 37 4, 36 7))', 0)
);
INSERT INTO geomcoll_test (id, geometry) VALUES (
1903,
sde.st_multipolygon ('multipolygon (((3 3, 4 6, 5 3, 3 3),
(8 24, 9 25, 1 28, 8 24), (13 33, 7 36, 1 40, 10 43, 13 33)))', 0)
);
从 geomcoll_test 表中选择几何集合。
Oracle
SELECT id, sde.st_astext (geometry) Geomcollection
FROM GEOMCOLL_TEST;
ID GEOMCOLLECTION
1901 MULTIPOINT (1.00000000 2.00000000, 4.00000000 3.00000000,
5.00000000 6.00000000)
1902 MULTILINESTRING ((33.00000000 2.00000000, 34.00000000
3.00000000, 35.00000000 6.00000000),(28.00000000 4.00000000,
29.00000000 5.00000000, 31.00000000 8.00000000, 43.00000000
12.00000000),(39.00000000 3.00000000, 37.00000000
4.00000000, 36.00000000 7.00000000))
1903 MULTIPOLYGON (((13.00000000 33.00000000, 10.00000000
43.00000000, 1.00000000 40.00000000, 7.00000000 36.00000000,
13.00000000 33.00000000)),((8.00000000 24.00000000,
9.00000000 25.00000000, 1.00000000 28.00000000, 8.00000000
24.00000000)), ((3.00000000 3.00000000,5.00000000
3.00000000, 4.00000000 6.00000000,3.00000000 3.00000000)))
PostgreSQL
SELECT id, sde.st_astext (geometry)
AS geomcollection
FROM geomcoll_test;
id geomcollection
1901 MULTIPOINT (1 2, 4 3, 5 6)
1902 MULTILINESTRING ((33 2, 34 3, 35 6),(28 4,
29 5, 31 8, 43 12),(39 3, 37 4, 36 7))
1903 MULTIPOLYGON (((13 33, 10 43, 1 40, 7 36,
13 33)),((8 24, 9 25, 1 28, 8 24)), 3 3, 5 3, 4 6, 3 3)))
9/15/2013