经验贝叶斯克里金法 (地统计分析)
用法
语法
EmpiricalBayesianKriging_ga (in_features, z_field, {out_ga_layer}, {out_raster}, {cell_size}, {transformation_type}, {max_local_points}, {overlap_factor}, {number_semivariograms}, {search_neighborhood}, {output_type}, {quantile_value}, {threshold_type}, {probability_threshold})
参数 | 说明 | 数据类型 |
in_features |
包含要插入的 z 值的输入点要素。 | Feature Layer |
z_field |
表示每个点的高度或量级值的字段。如果输入要素包含 z 值或 m 值,则该字段可以是数值字段或 Shape 字段。 | Field |
out_ga_layer (可选) |
生成的地统计图层。只有未请求任何输出栅格时才需要输出该图层。 | Geostatistical Layer |
out_raster (可选) |
输出栅格。只有未请求任何输出地统计图层时才需要输出该栅格。 | Raster Dataset |
cell_size (可选) |
要创建的输出栅格的像元大小。 可在“环境设置”的“栅格分析”下显式设置此值。如果未设置,则该值为输入空间参考中输入点要素范围的宽度与高度中的较小值除以 250。 | Analysis Cell Size |
transformation_type (可选) |
将应用到输入数据的变换类型。
| String |
max_local_points (可选) |
输入数据将自动分组,其点数不大于这一数目。 | Long |
overlap_factor (可选) |
表示本地模型(也称子集)之间重叠程度的系数。每个输入点均可落入多个子集中,重叠系数指定了各点将落入的子集的平均数。重叠系数值越高,输出表面就越平滑,但处理时间也越长。典型值在 0.01 到 5 范围内变化。 | Double |
number_semivariograms (可选) |
模拟的半变异函数的数量。 | Long |
search_neighborhood (可选) |
定义用于控制输出的周围点。“标准”为默认选项。 这是搜索邻域类(SearchNeighborhoodStandardCircular 和 SearchNeighborhoodSmoothCircular)。 StandardCircular
SmoothCircular
| Geostatistical Search Neighborhood |
output_type (可选) |
用于存储插值结果的表面类型。
| String |
quantile_value (可选) |
要生成的输出栅格的分位数。 | Double |
threshold_type (可选) |
确定概率值是否超过了阈值。
| String |
probability_threshold (可选) |
概率阈值。如果留空,将使用输入数据的中值。 | Double |
代码实例
EmpiricalBayesianKriging 示例 1(Python 窗口)
将一系列点要素插值成栅格。
import arcpy
arcpy.EmpiricalBayesianKriging_ga("ca_ozone_pts", "OZONE", "outEBK", "C:/gapyexamples/output/ebkout",
10000, "NONE", 50, 0.5, 100,
arcpy.SearchNeighborhoodStandardCircular(300000, 0, 15, 10, "ONE_SECTOR"),
"PREDICTION", "", "", "")
EmpiricalBayesianKriging 示例 2(独立脚本)
将一系列点要素插值成栅格。
# Name: EmpiricalBayesianKriging_Example_02.py
# Description: Bayesian kriging approach whereby many models created around the
# semivariogram model estimated by the restricted maximum likelihood algorithm is used.
# Requirements: Geostatistical Analyst Extension
# Author: Esri
# Import system modules
import arcpy
# Set environment settings
arcpy.env.workspace = "C:/gapyexamples/data"
# Set local variables
inPointFeatures = "ca_ozone_pts.shp"
zField = "ozone"
outLayer = "outEBK"
outRaster = "C:/gapyexamples/output/ebkout"
cellSize = 10000.0
transformation = "NONE"
maxLocalPoints = 50
overlapFactor = 0.5
numberSemivariograms = 100
# Set variables for search neighborhood
radius = 300000
smooth = 0.6
searchNeighbourhood = arcpy.SearchNeighborhoodSmoothCircular(radius, smooth)
outputType = "PREDICTION"
quantileValue = ""
thresholdType = ""
probabilityThreshold = ""
# Check out the ArcGIS Geostatistical Analyst extension license
arcpy.CheckOutExtension("GeoStats")
# Execute EmpiricalBayesianKriging
arcpy.EmpiricalBayesianKriging_ga(inPointFeatures, zField, outLayer, outRaster,
cellSize, transformation, maxLocalPoints, overlapFactor, numberSemivariograms,
searchNeighbourhood, outputType, quantileValue, thresholdType, probabilityThreshold)
相关主题
许可信息
ArcGIS for Desktop Basic:需要 Geostatistical Analyst
ArcGIS for Desktop Standard:需要 Geostatistical Analyst
ArcGIS for Desktop Advanced:需要 Geostatistical Analyst
9/15/2013