LocationAllocationSolverProperties (arcpy.na)

Краткая информация

Предоставляет доступ к свойствам слоя сетевого анализа местоположений. Функция GetSolverProperties используется для получения объекта LocationAllocationSolverProperties из слоя сетевого анализа местоположений.

Обсуждение

Объект LocationAllocationSolverProperties предоставляет доступ для чтения и записи ко всем свойствам слоя сетевого анализа местоположений. Этот объект можно использовать для изменения нужных свойств анализа слоя местоположений, а соответствующий слой можно повторно рассчитать для получения необходимых результатов. Новый слой местоположений можно создать с помощью инструмента геообработки Преобразование слоя в размещение-распределение (Make Location-Allocation Layer). Получение объекта LocationAllocationSolverProperties из нового слоя местоположений позволяет повторно использовать существующий слой для последующего анализа, а не создавать новый слой для каждого анализа, что может замедлять работу.

После изменения свойства объекта LocationAllocationSolverProperties соответствующий слой можно использовать с другими функциями и инструментами геообработки. Обновлять слой для внесения изменения не требуется.

Свойства

СвойствоОбъяснениеТип данных
accumulators
(чтение и запись)

Дает возможность получать или задавать список сетевых атрибутов стоимости, сумма которых подсчитывается в ходе данного анализа. Пустой список ([]) означает, что не подсчитывается сумма ни для каких атрибутов стоимости.

String
attributeParameters
(чтение и запись)

Дает возможность получать или задавать параметризованные атрибуты для использования их в анализе. Это свойство возвращает словарь Python. Ключом в словаре является кортеж двух значений – имени атрибута и имени параметра. Значение каждого элемента в словаре является значением параметра.

Параметризованные сетевые атрибуты используются для моделирования некоторого динамического аспекта значения атрибута. Например, туннель с ограничением высоты 12 футов может быть смоделирован с использованием параметра. В данном случае в качестве значения параметра следует указать высоту транспортного средства в футах. Если транспортное средство выше, чем 12 футов (3,7 м), ограничение будет оценено как верное (true), таким образом, проезд по туннелю будет запрещен. Подобным образом у моста может быть параметр, указывающий ограничение по весу.

Попытка изменить непосредственно свойство attributeParameters не приведет к обновлению значений. Вместо этого следует всегда использовать для установки значений этого свойства новый объект словаря. Различие между этими подходами проиллюстрировано следующими двумя блоками кода.

#Don't attempt to modify the attributeParameters property in place.
#This coding method won't work.

solverProps.attributeParameters[('HeightRestriction', 'RestrictionUsage')] = "PROHIBITED"
#Modify the attributeParameters property using a new dictionary object.
#This coding method works. 

params = solverProps.attributeParameters
params[('HeightRestriction', 'RestrictionUsage')] = "PROHIBITED"
solverProps.attributeParameters = params
Если слой сетевого анализа не имеет параметризованных атрибутов, это свойство вернет значение None (Нет).

Dictionary
defaultCapacity
(чтение и запись)

Дает возможность получать или задавать емкость пунктов обслуживания по умолчанию, если параметр Тип задачи Размещение-Распределение (Location-Allocation Problem Type) установлен равным MAXIMIZE_CAPACITATED_COVERAGE (Максимизировать зону охвата с учетом емкости). Для всех остальных типов задач этот параметр игнорируется.

Пункты обслуживания имеют свойство Capacity (Емкость), причем, если для конкретного пункта это свойство не является null, то оно используется для этого пункта вместо параметра defaultCapacity.

Double
facilitiesToFind
(чтение и запись)

Дает возможность получать или задавать количество пунктов обслуживания, положение которых определяется при расчете. Значение этого свойства игнорируется, если свойство problemType имеет значение MINIMIZE_FACILITIES (Минимизировать количество пунктов), поскольку в этом случае при расчете определяется, как разместить минимальное количество пунктов обслуживания для достижения максимальной зоны охвата. Значение свойства также игнорируется, когда свойство problemType имеет значение TARGET_MARKET_SHARE (Доля на целевом рынке) – в этом случае при расчете определяется минимальное количество пунктов обслуживания, требуемое для захвата определенной доли рынка.

Integer
impedance
(чтение и запись)

Дает возможность получать или задавать сетевой атрибут стоимости, используемый в качестве импеданса.

String
impedanceCutoff
(чтение и запись)

Дает возможность получать или задавать максимальный импеданс, при котором точка спроса может быть отнесена к пункту обслуживания.

Double
impedanceParameter
(чтение и запись)

Дает возможность получать или задавать значение параметра для уравнений, заданных свойством impedanceTransformation. Значение этого свойства игнорируется, если свойство impedanceTransformation имеет значение LINEAR (Линейный). Значение свойства должно быть ненулевое.

Double
impedanceTransformation
(чтение и запись)

Дает возможность получать или задавать уравнение для преобразования сетевой стоимости между пунктами обслуживания и точками спроса. Значение этого свойства вместе со значением свойства impedanceParameter задает, насколько сильно сетевой импеданс между пунктами обслуживания и точками спроса влияет на выбор пунктов при расчете. Список возможных значений следующий:

  • LINEARПреобразованный сетевой импеданс между пунктом обслуживания и точкой спроса – то же самое, что и импеданс кратчайшего сетевого пути между ними. При этом варианте значение свойства impedanceParameter всегда принимается за единицу, а заданное значение свойства impedanceParameter игнорируется.
  • POWERПреобразованный сетевой импеданс между пунктом обслуживания и точкой спроса равен импедансу кратчайшего сетевого пути, возведенному в степень, заданную в свойстве impedanceParameter. Этот вариант используется с положительными значениями свойства impedanceParameter для придания ближайшим пунктам обслуживания большего веса.
  • EXPONENTIALПреобразованный сетевой импеданс между пунктом обслуживания и точкой спроса равен математической константе e в степени, равной импедансу кратчайшего сетевого пути, умноженному на значение свойства impedanceParameter. Этот вариант используется с положительными значениями свойства impedanceParameter для придания ближайшим пунктам обслуживания крайне высокого веса.
String
outputPathShape
(чтение и запись)

Контролирует применение прямых линий для отображения результатов анализа Размещение-Распределение. Список возможных значений следующий:

  • NO_LINESВ ходе анализа доля в качестве выходных данных не создается никакая форма. Это удобно при большом количестве точек спроса или объектов, когда необходимо получить только табличные данные.
  • STRAIGHT_LINESБудут построены прямые линии, соединяющие пункты обслуживания с отнесенными к ним точками спроса.
String
problemType
(чтение и запись)

Дает возможность получать или задавать тип задачи для расчета. Выбор типа задачи зависит от вида размещаемого пункта обслуживания. Различные типы пунктов обслуживания имеют различные приоритеты и ограничения. Список возможных значений следующий:

  • MINIMIZE_IMPEDANCEЭтот параметр решает задачу размещения склада. Он выбирает набор пунктов обслуживания таким образом, чтобы сумма взвешенного импеданса (спрос в точке расположения, умноженный на импеданс пути до ближайшего пункта обслуживания) была минимальной. Эта задача часто называется задачей P-медианы.
  • MAXIMIZE_COVERAGEЭтот параметр решает задачу размещения пожарной части. Он выбирает пункты обслуживания таким образом, чтобы все или большинство точек спроса находились в пределах заданного импеданса.
  • MINIMIZE_FACILITIESЭтот параметр решает задачу размещения пожарной части. Он выбирает минимальное количество пунктов обслуживания, необходимое для покрытия всех или большинства точек спроса в пределах заданного импеданса.
  • MAXIMIZE_ATTENDANCEЭтот параметр позволяет решать задачу размещения магазинов, где доля спроса, размещенная на ближайшем пункте обслуживания, сокращается с удалением от пункта обслуживания. Выбирается набор пунктов обслуживания, удовлетворяющий максимальный распределенный спрос. Спрос за пределами заданного порога импеданса не влияет на выбранный набор пунктов обслуживания.
  • MAXIMIZE_MARKET_SHAREЭтот параметр решает задачу размещения конкурирующих пунктов обслуживания. При решении задачи пункты обслуживания выбираются таким образом, чтобы обеспечивалась наибольшая доля рынка в зоне присутствия конкурентов. Для определения доли спроса для каждого пункта обслуживания используется модель притягательности. Выбирается набор пунктов обслуживания, удовлетворяющих максимальный распределенный спрос.
  • TARGET_MARKET_SHAREЭтот параметр решает задачу размещения конкурирующих пунктов обслуживания. При решении задачи пункты обслуживания выбираются таким образом, чтобы обеспечить заданную целевую долю рынка в зоне присутствия конкурентов. Для определения доли спроса для каждого пункта обслуживания используется модель притягательности. При решении задачи выбирается минимальное количество пунктов обслуживания, обеспечивающих заданную целевую долю рынка.
String
restrictions
(чтение и запись)

Дает возможность получать или задавать список атрибутов ограничения, применяемых в ходе данного анализа. Пустой список ([]) означает, что в ходе анализа не применяются никакие атрибуты ограничения.

String
solverName
(только чтение)

Возвращает название механизма расчета, на который ссылается слой Network Analyst, использующийся для получения объекта свойств механизма расчета. Это свойство всегда возвращает строковое значение Location-Allocation Solver (Механизм расчета Размещение-Распределение), если доступ к нему осуществляется из объекта LocationAllocationSolverProperties.

String
targetMarketShare
(чтение и запись)

Дает возможность получать или задавать долю целевого рынка в процентах для расчета, если свойство problemType имеет значение TARGET_MARKET_SHARE (Доля на целевом рынке). Это процент от общего веса спроса, который должны удовлетворить пункты обслуживания решения. Механизм решения выбирает количество пунктов обслуживания, необходимое для обеспечения целевой доли рынка, заданной этим числовым значением. Любое значение, заданное в свойстве facilitiesToFind, будет игнорироваться.

Double
timeOfDay
(чтение и запись)

Дает возможность получать или задавать время и дату отправления. Время отправления может быть от пункта обслуживания или от точки спроса – в зависимости от заданного направления. Значение None (Нет) указывает на то, что дата и время не применяются.

Вместо конкретной даты может быть задан день недели, при помощи следующих условных дат:

  • Сегодня – 30.12.1899
  • Воскресенье – 31.12.1899
  • Понедельник – 01.01.1900
  • Вторник – 02.01.1900
  • Среда – 03.01.1900
  • Четверг – 04.01.1900
  • Пятница – 05.01.1900
  • Суббота – 06.01.1900

К примеру, если отправление на маршрут должно происходить в 8:00 утра в пятницу, следует указать значение datetime.datetime(1900, 1, 5, 8,0,0).

Параметр timeZoneUsage определяет, соответствует ли время и дата зоне UTC или часовому поясу, в котором находятся пункты обслуживания или точки спроса.

DateTime
timeZoneUsage
(чтение и запись)

Указывает часовой пояс параметра timeOfDay.

  • GEO_LOCALЗначение параметра timeOfDay относится к часовому поясу, в котором находятся пункты обслуживания или точки спроса. Если время и дата заданы в timeOfDay, а travelDirection установлен на FACILITY_TO_DEMAND, то это будет часовой пояс пунктов обслуживания. Если при тех же параметрах travelDirection установлен на DEMAND_TO_FACILITY, то это будет часовой пояс пунктов обслуживания.
  • UTCЗначения параметра timeOfDay указываются во Всемирном координированном времени (UTC). Используйте эту опцию, если хотите провести анализ для конкретного времени, например текущего, но не знаете, в каком часовом поясе будут находиться пункты обслуживания или точки спроса.

При выполнении анализа размещения-распределения, охватывающего несколько часовых поясов, применяются следующие правила:

  • При указании времени начала движения от объекта с точке спроса все объекты должны быть приведены к одному часовому поясу.
  • При указании времени начала движения от точки спроса к объекту все точки спроса должны быть приведены к одному часовому поясу.

String
travelDirection
(чтение и запись)

Задает направление движения между пунктами обслуживания и точками спроса при расчете сетевой стоимости. Список возможных значений следующий:

  • FACILITY_TO_DEMANDНаправление движения от пункта обслуживания к точкам спроса.
  • DEMAND_TO_FACILITYНаправление движения от точек спроса к пунктам обслуживания.
String
useHierarchy
(чтение и запись)

Отвечает за использование атрибута иерархии при проведении анализа. Список возможных значений следующий:

  • USE_HIERARCHY Для анализа используется атрибут иерархии. Применение иерархии приводит к предпочтению при расчете ребер высшего порядка по сравнению с ребрами низшего порядка. Расчеты с иерархией выполняются быстрее, и они могут использоваться для моделирования предпочтений водителя, который скорее выберет для проезда автостраду, нежели местную дорогу – даже если это приведет к увеличению длины пути. Эта опция применима только в том случае, если в наборе сетевых данных, на который ссылается слой сетевых данных ArcGIS Network Analyst, имеется атрибут иерархии. Для выбора этого варианта также служит значение True.
  • NO_HIERARCHYДля анализа атрибут иерархии не используется. Расчет без применения иерархии дает точный маршрут для набора сетевых данных. Для выбора этого варианта также служит значение False.
String
uTurns
(чтение и запись)

Дает возможность получать или задавать политику работы с разворотами в соединениях, которые могут возникать в ходе прохода по сети между остановками. Список возможных значений следующий:

  • ALLOW_UTURNSРазвороты разрешены в соединениях с любым количеством смежных ребер.
  • NO_UTURNSРазвороты запрещены во всех соединениях, вне зависимости от их валентности. Обратите внимание, что, даже при выборе этого параметра, развороты все же разрешены в сетевых положениях. Чтобы запретить развороты и в положениях сети, можно задать индивидуальное свойство положения CurbApproach.
  • ALLOW_DEAD_ENDS_ONLYРазвороты запрещены во всех соединениях, кроме тех, у которых имеется только одно смежное ребро (тупик).
  • ALLOW_DEAD_ENDS_AND_INTERSECTIONS_ONLYРазвороты запрещены в соединениях с ровно двумя смежными ребрами, но разрешены на перекрестках (в соединениях с тремя смежными ребрами или более) и в тупиках (соединениях с ровно одним смежным ребром). Зачастую сети имеют избыточные соединения в середине сегмента дороги. Этот вариант позволяет предотвратить развороты транспортных средств в подобных точках.
String

Пример кода

Пример 1 LocationAllocationSolverProperties (окно Python)

Скрипт показывает, как изменить тип проблемы слоя сетевого анализа местоположений на Минимизировать пункты обслуживания (Minimize Facilities) и установить степень преобразования импеданса с параметром импеданса, равным 2. Предполагается, что слой местоположений Stores Coverage был создан в новом документе карты на учебного набора сетевых данных на территорию города Сан-Франциско.

#Get the location-allocation layer object from a layer named "Stores Coverage" in
#the table of contents
laLayer = arcpy.mapping.Layer("Stores Coverage")

#Get the solver properties object from the location-allocation layer
solverProps = arcpy.na.GetSolverProperties(laLayer)

#Update the properties for the location-allocation layer using the solver properties
#object
solverProps.problemType = "MINIMIZE_FACILITIES"
solverProps.impedanceTransformation = "POWER"
solverProps.impedanceParameter = 2
Пример 2 LocationAllocationSolverProperties (рабочий процесс)

Скрипт демонстрирует, как выбрать оптимальные местоположения магазинов для получения наиболее развитой розничной сети, с помощью анализа местоположений. Сначала скрипт создает новый слой местоположений с нужными настройками анализа. После этого возможные размещения магазинов и центроиды групп блоков загружаются в качестве, соответственно, пунктов обслуживания и точек спроса. Рассчитанный анализ сохраняется в файл слоя. Два следующих анализа осуществляются путем изменения свойств анализа, используя объект LocationAllocationSolverProperties. После каждого расчета слой сохраняется как файл слоя. Скрипт использует учебные данные на территорию города Сан-Франциско. Детальное описание процесса находится в упражнении 9 учебника по Network Analyst. В то время как в руководстве описан для вас весь этот процесс для пользовательского интерфейса ArcMap, здесь содержится пример автоматизации таких же действий с помощью скрипта Python.

import arcpy

#Set up the environment
arcpy.env.overwriteOutput = True
arcpy.env.workspace = "C:/data/SanFrancisco.gdb"
arcpy.CheckOutExtension("network")

#Set up variables
networkDataset = "Transportation/Streets_ND"
outNALayerName = "NewStoreLocations"
inFacilities = "Analysis/CandidateStores"
requiredFacility = "Analysis/ExistingStore"
competitorFacility = "Analysis/CompetitorStores"
inDemandPoints = "Analysis/TractCentroids"
outputFolder = "C:/data/output/"

#Create a new location-allocation layer. In this case the demand travels to
#the facility. We wish to find 3 potential store locations out of all the
#candidate store locations using the maximize attendance model.
outNALayer = arcpy.na.MakeLocationAllocationLayer(networkDataset, outNALayerName,
                                                  "TravelTime","DEMAND_TO_FACILITY",
                                                  "MAXIMIZE_ATTENDANCE",3,5,
                                                  "LINEAR")
#Get the layer object from the result object. The location-allocation layer
#can now be referenced using the layer object.
outNALayer = outNALayer.getOutput(0)

#Get the names of all the sublayers within the location-allocation layer.
subLayerNames = arcpy.na.GetNAClassNames(outNALayer)
#Stores the layer names that we will use later
facilitiesLayerName = subLayerNames["Facilities"]
demandPointsLayerName = subLayerNames["DemandPoints"]

#Load the candidate store locations as facilities using default search
#tolerance and field mappings.
arcpy.na.AddLocations(outNALayer, facilitiesLayerName, inFacilities, "", "",
                      exclude_restricted_elements = "EXCLUDE")

#Load the tract centroids as demand points using default search tolerance. Use 
#the field mappings to map the Weight property from POP2000 field.
demandFieldMappings = arcpy.na.NAClassFieldMappings(outNALayer,
                                                    demandPointsLayerName)
demandFieldMappings["Weight"].mappedFieldName = "POP2000"
arcpy.na.AddLocations(outNALayer,demandPointsLayerName ,inDemandPoints,
                      demandFieldMappings, "",
                      exclude_restricted_elements = "EXCLUDE")

#Solve the location-allocation layer
arcpy.na.Solve(outNALayer)
    
#Save the solved location-allocation layer as a layer file on disk with 
#relative paths
outLayerFile = outputFolder + outNALayerName + ".lyr"
arcpy.management.SaveToLayerFile(outNALayer,outLayerFile,"RELATIVE")

#We need to re-solve the previous scenario as a store-expansion scenario, in
#which we will start with an existing store and optimally locate two additional
#stores.
#Load the existing store location as the required facility. Use the field
#mappings to set the facility type to requried. We need to append this
#required facility to existing facilities.
fieldMappings = arcpy.na.NAClassFieldMappings(outNALayer, facilitiesLayerName)
fieldMappings["FacilityType"].defaultValue = 1
fieldMappings["Name"].mappedFieldName = "Name"
arcpy.na.AddLocations(outNALayer, facilitiesLayerName, requiredFacility,
                      fieldMappings, "", append = "APPEND",
                      exclude_restricted_elements = "EXCLUDE")

#Solve the location-allocation layer
arcpy.na.Solve(outNALayer)
    
#Save the solved location-allocation layer as a layer file on disk with 
#relative paths
updatedNALayerName = "StoreExpansionScenario"
outNALayer.name = updatedNALayerName
outLayerFile = outputFolder + updatedNALayerName + ".lyr"
arcpy.management.SaveToLayerFile(outNALayer,outLayerFile,"RELATIVE")

#We need to resolve the previous scenario and locate new stores to 
#maximize market share in light of competing stores.

#Load the competitor store locations as the competitor facilities. Use the field
#mappings to set the facility type to Competitor. We need to append these
#competitor facilities to existing facilities.
fieldMappings["FacilityType"].defaultValue = 2
arcpy.na.AddLocations(outNALayer, facilitiesLayerName, competitorFacility,
                      fieldMappings, "", append = "APPEND",
                      exclude_restricted_elements = "EXCLUDE")

#Get the LocationAllocationSolverProperties object from the location-allocation 
#layer to modify the analysis settings for the layer.
solverProps = arcpy.na.GetSolverProperties(outNALayer)

#Set the problem type to Maximize Market Share, and impedance transformation to
#Power with an impedance parameter value of 2.
solverProps.problemType = "MAXIMIZE_MARKET_SHARE"
solverProps.impedanceTransformation = "POWER"
solverProps.impedanceParameter = 2

#Solve the location-allocation layer
arcpy.na.Solve(outNALayer)

#print the market share that was obtained
arcpy.AddMessage(arcpy.GetMessage(0))

#Change the name of the NA Layer
updatedNALayerName = "MaximizedMarketShareStoreLocations"
outNALayer.name = updatedNALayerName

#Save the solved location-allocation layer as a layer file on disk with 
#relative paths
outLayerFile = outputFolder + updatedNALayerName + ".lyr"
arcpy.management.SaveToLayerFile(outNALayer,outLayerFile,"RELATIVE")
    
arcpy.AddMessage("Completed")

Связанные темы

5/10/2014