ネットワーク空間ウェイトの作成(Generate Network Spatial Weights)の詳細

空間ウェイト マトリックスは、データセットのフィーチャ間に存在する空間リレーションシップを定量化します。[空間統計] ツールボックス の多くのツールは、各フィーチャと近傍フィーチャの関連性を評価します。空間ウェイト マトリックス ファイルは、そのような近傍空間リレーションシップを定義します(空間ウェイトと空間ウェイト マトリックス ファイルの詳細については、「空間ウェイト」をご参照ください。)

一般に、フィーチャ間の空間リレーションシップは、ユークリッド距離の計測値と距離加重方式(近接距離、固定距離、または逆距離)を使用して定義されます(「空間リレーションシップのモデル化」をご参照ください)。ただし、小売分析、サービスのアクセスビリティ、緊急応答、避難計画、交通事故分析など、多くの用途では、空間リレーションシップを実世界の交通ネットワーク(道路、鉄道、歩道など)に対して定義するほうが適切です。[ネットワーク空間ウェイトの作成(Generate Network Spatial Weights)] ツールでは、交通がネットワーク データセットに限定されている場合に、ポイント フィーチャ間の時間または距離に基づいて空間リレーションシップをモデル化して保存します。このツールには、ArcGIS Network Analyst エクステンションのライセンスが必要です。

ユーザは、フィーチャの出発地と目的地の両方を表すポイント フィーチャクラスを用意します。また、既存のネットワーク データセットも用意します(「ネットワーク データセットの設計」を参照するか、Esri Data & Maps にある、すぐに使えるネットワーク データセットを使用します)。[ネットワーク空間ウェイトの作成(Generate Network Spatial Weights)] ツールは、ネットワークに各ポイントを配置して、各フィーチャと他のフィーチャすべてとの距離または時間による近さを定量化します。2 つのフィーチャの近さを解くときには、オプションとして、バリアまたは制限(道路の閉鎖など)を考慮できます。このような近接の値は、[空間的自己相関分析(Spatial Autocorrelation(Morans I))][ホット スポット分析(Hot Spot Analysis(Getis-Ord Gi*))][クラスタ/外れ値分析(Cluster and Outlier Analysis(Anselin Local Morans I))] など、いくつかの空間統計ツールの数式で活用されます。

詳細詳細:

空間ウェイト マトリックス ファイル内の近接の値は、リトル エンディアンのバイナリ形式で格納され、疎行列の手法によって使用するディスク容量とメモリ、必要な計算の数を最小限に抑えます。

ヒントヒント:

ArcGIS ユーザは無料で使用できる Esri Data & Maps に、SDC 形式であらかじめ作成されたネットワーク データセットなどの StreetMap データが含まれています。このデータセットは、米国とカナダを対象としています。これらのネットワーク データセットは、[ネットワーク空間ウェイトの作成(Generate Network Spatial Weights)] ツールからは直接使用できます。

参考資料

Anselin, L.(1988)Spatial Econometrics:Methods and ModelsBoston:Kluwer

Getis, A. および Aldstadt, J.(2004)「Constructing the Spatial Weights Matrix Using a Local Statistic」Geographical Analysis 36(2):90–104

Haining, R.(2003)Spatial Data Analysis:Theory and PracticeCambridge, UK:Cambridge University Press

Price, Mike(2009秋)「It's all about streetsArcUser OnlineESRI

5/10/2014