ジオリファレンスと座標系
ジオリファレンスは、マップ座標を使用してマップ フィーチャに空間的位置情報を割り当てることです。 マップ レイヤ内のすべてのエレメントは、地球の表面上または表面付近に配置するための、特定の地理的な位置や範囲を持ちます。 ジオグラフィック フィーチャを正確に配置することがマッピングと GIS の両方において重要です。
フィーチャの正確な位置や形状を記述するには、実世界の位置を定義するための座標フレームワークが必要です。 地理座標系は、地理的位置をオブジェクトに割り当てるために使用されます。 緯度と経度によるグローバル座標系は、こうした座標系の 1 つです。 もう 1 つは、グローバル フレームワークに基づく平面座標系または直交座標系です。
マップは、緯度経度と UTM メートルなどの投影座標系の座標値の両方でラベリングされた格子線、経緯線、および地上のさまざまな位置を示す目盛を使用して、地球の表面上の位置を表します。 さまざまなマップ レイヤに含まれるジオグラフィック エレメントは、指定されたマップ範囲に対して特定の順序で重ねて描画されます。
GIS データセットには、地理的な位置や形状を記録するためのグローバル座標系または直交座標系内の座標位置が含まれています。 このようにして、複数の GIS データ レイヤを地球表面に重ね合わせることができます。
緯度と経度
地球表面の地理的な位置を説明するために、緯度と経度による球面座標を使用する方法があります。 緯度と経度は、地球の中心から地表のある地点までの角度を度数で表します。 この種類の座標参照系は一般的に地理座標系と呼ばれます。
経度は、東西方向の角度を表します。 従来より、緯度はグリニッジ子午線(北極からイギリスのグリニッジを通り南極までをつないだ仮想的な線)に基づいています。 この角度が経度 0 となります。通常、グリニッジ子午線よりも西は負の経度、東は正の経度で記録されます。 たとえば、カリフォルニア州ロサンゼルスはおおよそ緯度「+33 度 56 分」、経度「-118 度 24 分」の位置にあります。
経度と緯度は地球表面上の正確な位置を特定することができますが、計測単位あたりの長さと距離は同じにはなりません。 赤道に沿った地域に限り、経度 1°で表される距離が緯度 1°で表される距離に近似します。 これは、赤道だけが経線と同じ長さの緯線だからです。 (地球と同じ半径を有する円を大円と呼びます。 赤道とすべての経線が大円に相当します)。
赤道の上下では、緯線を定義する円は、経線が収束する北極と南極の 1 点になるまで徐々に小さくなっていきます。 経線が極に向かって収束するにつれ、経度 1 度で表される距離が 0 まで減少していきます。 Clarke 1866 回転楕円体の場合、赤道での経度 1°は 111.321 キロメートルに相当するのに対し、緯度 60°ではわずか 55.802 キロメートルにすぎません。 緯度と経度には基準となる長さがないため、距離や面積を正確に計測したり、平らな地図やコンピュータの画面上に簡単にデータを表示したりすることはできません。 多くの(すべてではない)GIS 解析およびマッピング アプリケーションの使用には、しばしば投影座標系によって実現される、より安定した平面座標フレームワークが必要となります。 その代わりに、空間演算子で使用されているアルゴリズムの中には、球面(地理)座標系の幾何学的な性質を考慮に入れているものもあります。
直交座標を使用した地図投影法
投影座標系とは、印刷された地図またはコンピュータの画面のような平面で表現するために設計されたすべての座標系を指します。
2 次元および 3 次元の直交座標系は、X と Y の値を使用して (また、この後で説明するラスタの行と列を使用することにより) フィーチャの地理的な位置や形状を記述するためのメカニズムを提供します。
直交座標系は 2 つの軸を使用します。 1 つは水平方向 (x) の軸で東西を表し、1 つは垂直方向 (y) の軸で南北を表します。 軸が交差する点を原点と呼びます。 オブジェクトの位置は(X,Y)表記を使用して、原点に基づいて定義されます。X は水平軸に沿った距離を表し、Y は垂直軸に沿った距離を表します。 原点は(0,0)として定義されます。
次の図では、(4,3)は原点から X 軸沿いに右へ 4 単位、Y 軸沿いに上へ 3 単位の地点を表します。
3D 座標系
投影座標系では、海抜を計測するために Z 値も使用するケースが増えています。
次の図の(2,3,4)は、原点から X 軸沿いに右へ 2 単位、Y 軸沿いに上へ 3 単位、地表から 4 単位の標高(海抜 4 メートルなど)の位置を表します。
地図投影の特性と歪み
地球は球形であるため、地図製作者や GIS 業者は、平面座標系を使用してどのように実世界を表すかという課題に直面します。 この状況を理解するために、半分に割ったバスケットボールを平らにする方法について考えてみましょう。変形させるか、切れ目を入れずに平らにすることは不可能です。 地球の表面を平面に投影する方法を地図投影法といいます。
投影座標系は、2 次元平面上に定義されます。 投影座標は、2 次元(X,Y)または 3 次元(X,Y,Z)で定義することができ、X,Y 座標の計測は地表上の位置を表し、Z 座標は海抜を表します。
地理座標系とは異なり、投影座標系では 2 次元上での長さ、角度、および面積が一定になります。 ただし、地表を平面マップとして表す地図投影法はすべて、距離、面積、形状、方向のいずれかの点で歪みを生じます。
ユーザは、それぞれの使用目的、地理的位置、範囲に適した地図投影法を使用することで、これらの制限に対処します。 また、GIS ソフトウェアは座標系を変換して、異なる座標系にあるデータセットの統合や多くの重要なワークフローをサポートすることもできます。
多くの地図投影法は、特定の目的を達成するために設計されています。 形状を維持するための地図投影法 (正角図法) もあれば、面積を維持するために使用されるものもあります (正積図法)。
これらの特性 (地図投影法、楕円体、測地基準系) は、各 GIS データセットや各マップの座標系の定義において、重要なパラメータとなります。 各 GIS データセットのこうした特性を詳細に記録することにより、コンピュータはデータセット エレメントの地理的な位置を適切な座標系にリアルタイムで再投影および変換することができます。 結果として、複数の GIS レイヤからの情報を統合し、組み合わせることが可能になります。 これは GIS の基本機能です。 正確な位置はすべての GIS 処理の基盤を築きます。