インクリメンタル空間的自己相関(Incremental Spatial Autocorrelation) (空間統計解析)

ライセンス レベル:BasicStandardAdvanced

サマリ

一連の距離の空間的自己相関を計測し、必要に応じて、これらの距離とそれに対応する Z スコアの折れ線グラフを作成します。Z スコアは、空間クラスタ化の強度を表し、統計的に有意な Z スコアのピークは、クラスタ化を促進する空間プロセスが最も顕著である距離を表します。これらの距離のピークは、多くの場合、[距離バンドまたは距離半径] パラメータを持つツールで使用する際に適した値となります。

Incremental Spatial Autocorrelation
Z-score peaks reflect distances where the spatial processes promoting clustering are most pronounced.

使用法

構文

IncrementalSpatialAutocorrelation_stats (Input_Features, Input_Field, Number_of_Distance_Bands, {Beginning_Distance}, {Distance_Increment}, {Distance_Method}, {Row_Standardization}, {Output_Table}, {Output_Report_File})
パラメータ説明データ タイプ
Input_Features

空間的自己相関が一連の距離に対して計測されるフィーチャクラスです。

Feature Layer
Input_Field

空間的自己相関の評価時に使用される数値フィールドです。

Field
Number_of_Distance_Bands

近傍サイズを増やしてデータセットの空間的自己相関を分析する回数です。開始ポイントと増やすサイズは、それぞれ [開始距離] パラメータと [距離の増加量] パラメータで指定します。

Long
Beginning_Distance
(オプション)

空間的自己相関分析を開始する距離で、ここを起点として距離が増やされます。このパラメータの値は、[出力座標系] 環境設定の単位で入力する必要があります。

Double
Distance_Increment
(オプション)

繰り返し実行の後に増やす距離です。分析で使用する距離は [開始距離] で指定した距離から始まり、[距離の増加量] で指定した値だけ増やされます。このパラメータの値は、[出力座標系] 環境設定の単位で入力する必要があります。

Double
Distance_Method
(オプション)

各フィーチャから隣接フィーチャまでの距離の計算方法を指定します。

  • EUCLIDEAN2 つのポイント間の直線距離(最短距離)。
  • MANHATTAN直角の軸(街区)に沿って計測した 2 つのポイント間の距離。X 座標と Y 座標の間の(絶対)距離を合計して計算します。
String
Row_Standardization
(オプション)
  • NONE空間ウェイトの標準化は適用されません。
  • ROW空間ウェイトが標準化されます。それぞれのウェイトをその行の合計(すべての隣接フィーチャのウェイトの合計)で割ります。
Boolean
Output_Table
(オプション)

作成されるテーブルで、各距離バンドと関連付けられた Z スコアの結果が記入されています。

Table
Output_Report_File
(オプション)

作成される PDF ファイルで、結果をまとめた折れ線グラフが含まれています。

File

コードのサンプル

IncrementalSpatialAutocorrelation(インクリメンタル空間的自己相関)の例 1(Python ウィンドウ)

次の Python ウィンドウ スクリプトは、IncrementalSpatialAutocorrelation(インクリメンタル空間的自己相関)ツールを使用する方法を示しています。

import arcpy, os
import arcpy.stats as SS
arcpy.env.workspace = r"C:\ISA"
SS.IncrementalSpatialAutocorrelation("911CallsCount.shp", "ICOUNT", "20", "", "", "EUCLIDEAN",
                                           "ROW_STANDARDIZATION", "outTable.dbf", "outReport.pdf")
IncrementalSpatialAutocorrelation(インクリメンタル空間的自己相関)の例(スタンドアロン Python スクリプト)

次のスタンドアロン Python スクリプトは、IncrementalSpatialAutocorrelation(インクリメンタル空間的自己相関)ツールを使用する方法を示しています。

# Hot Spot Analysis of 911 calls in a metropolitan area
# using the Incremental Spatial Autocorrelation and Hot Spot Analysis Tool

# Import system modules
import arcpy, os
import arcpy.stats as SS

# Set geoprocessor object property to overwrite existing output, by default
arcpy.gp.overwriteOutput = True

# Local variables
workspace = r"C:\ISA"

try:
    # Set the current workspace (to avoid having to specify the full path to the feature classes each time)
    arcpy.env.workspace = workspace

    # Copy the input feature class and integrate the points to snap together at 30 feet
    # Process: Copy Features and Integrate
    cf = arcpy.CopyFeatures_management("911Calls.shp", "911Copied.shp","#", 0, 0, 0)
    integrate = arcpy.Integrate_management("911Copied.shp #", "30 Feet")

    # Use Collect Events to count the number of calls at each location
    # Process: Collect Events
    ce = SS.CollectEvents("911Copied.shp", "911Count.shp")

    # Use Incremental Spatial Autocorrelation to get the peak distance
    # Process: Incremental Spatial Autocorrelation
    isa = SS.IncrementalSpatialAutocorrelation(ce, "ICOUNT", "20", "", "", "EUCLIDEAN",
                                                     "ROW_STANDARDIZATION", "outTable.dbf", "outReport.pdf")

    # Hot Spot Analysis of 911 Calls
    # Process: Hot Spot Analysis (Getis-Ord Gi*)
    distance = isa.getOutput(2)
    hs = SS.HotSpots(ce, "ICOUNT", "911HotSpots.shp", "Fixed Distance Band",
                           "Euclidean Distance", "None",  distance, "", "")

except:
    # If an error occurred when running the tool, print out the error message.
    print arcpy.GetMessages()

環境

出力データの座標系

フィーチャ ジオメトリは分析に先立って出力座標系に投影されます。すべての数学的演算は、出力座標系の空間参照に基づいて実行されます。

関連トピック

ライセンス情報

ArcGIS for Desktop Basic: ○
ArcGIS for Desktop Standard: ○
ArcGIS for Desktop Advanced: ○
9/15/2013