Workspace To Mosaic (Samples)

License Level:BasicStandardAdvanced

Summary

Mosaics all the raster datasets in a workspace, or geodatabase, to an output raster dataset. The output raster dataset must already exist.

LegacyLegacy:
This tool has been deprecated. For more information, see An overview of the Samples toolbox.

Usage

Syntax

WorkspaceToMosaic_samples (input_workspace, output_raster, {mosaic_method}, mosaic_colormap_mode, {ignore_background_value}, {nodata_value}, {convert_1_bit_data_to_8_bit}, {mosaic_tolerance})
ParameterExplanationData Type
input_workspace

The input workspace can be a directory, a personal geodatabase, file geodatabase, or an ArcSDE geodatabase.

Folder | Workspace
output_raster

The output raster dataset into which the other input raster datasets are mosaicked. The output raster dataset must already exist.

Raster Dataset
mosaic_method
(Optional)

The method used to mosaic overlapping areas.

  • FIRSTThe output cell value of the overlapping areas will be the value from the first raster dataset mosaicked into that location.
  • LASTThe output cell value of the overlapping areas will be the value from the last raster dataset mosaicked into that location. This is the default.
  • BLENDThe output cell value of the overlapping areas will be a horizontally weighted calculation of the values of the cells in the overlapping area.
  • MEANThe output cell value of the overlapping areas will be the average value of the overlapping cells.
  • MINIMUMThe output cell value of the overlapping areas will be the minimum value of the overlapping cells.
  • MAXIMUMThe output cell value of the overlapping areas will be the maximum value of the overlapping cells.
  • SUMThe output cell value of the overlapping areas will be the total sum of the overlapping cells.
String
mosaic_colormap_mode

The method used to choose which color map from the input rasters will be applied to the mosaic output.

  • FIRSTThe color map from the first raster dataset in the list will be applied to the output raster mosaic. This is the default.
  • LASTThe color map from the last raster dataset in the list will be applied to the output raster mosaic.
  • MATCHWill take all the color maps into consideration when mosaicking. If all possible values are already used (for the bit depth), it will attempt to match the value with the closest color that is available.
  • REJECTOnly the raster datasets that do not have a color map associated with them will be mosaicked.
String
ignore_background_value
(Optional)

Use this option to remove the unwanted values created around the raster data. The value specified will be distinguished from other valuable data in the raster dataset. For example, a value of zero along the raster dataset's borders will be distinguished from zero values within the raster dataset.

The pixel value specified will be set to NoData in the output raster dataset.

For file-based rasters and personal geodatabase rasters, the Ignore Background Value must be set to the same value as NoData in order for the background value to be ignored. ArcSDE and file geodatabase rasters will work without this extra step.

Double
nodata_value
(Optional)

All the pixels with the specified value will be set to NoData in the output raster dataset.

Double
convert_1_bit_data_to_8_bit
(Optional)

Choose whether the input 1-bit raster dataset will be converted to an 8-bit raster dataset. In this conversion the value 1 in the input raster dataset will be changed to 255 in the output raster dataset. This is useful when importing a 1-bit raster dataset to ArcSDE. One-bit raster datasets have 8-bit pyramid layers when stored in a file system, but in ArcSDE, 1-bit raster datasets can only have 1-bit pyramid layers, which makes the display unpleasant. By converting the data to 8 bit in ArcSDE, the pyramid layers are built as 8 bit instead of 1 bit, resulting in a proper raster dataset in the display.

  • NONENo conversion will be done. This is the default.
  • OneBitTo8BitThe input raster will be converted.
Boolean
mosaic_tolerance
(Optional)

When mosaicking takes place, the target and the source pixels do not always line up exactly. When there is a misalignment of pixels, a decision needs to be made whether resampling takes place or whether the data should be shifted. The mosaicking tolerance controls whether resampling of the pixels take place or if the pixels should be shifted.

If the difference in pixel alignment (of the incoming dataset and the target dataset) is greater than the tolerance, resampling will take place. If the difference in pixel alignment (of the incoming dataset and the target dataset) is less than the tolerance, resampling will not take place (instead, a shift is performed).

The unit of tolerance is a pixel, where the valid value range is 0 to 0.5. A tolerance of 0.5 will guarantee a shift takes place. A tolerance of zero guarantees resampling, if there is a misalignment in pixels.

For example, the source and target pixels have a misalignment of 0.25. If the mosaicking tolerance is set to 0.2, then resampling will take place since the pixel misalignment is greater than the tolerance. If the mosaicking tolerance is set to 0.3, then the pixels will be shifted.

Double

Code Sample

import arcgisscripting
gp = arcgisscripting.create()
 
gp.WorkspaceToMosaic_samples("D:\\temp\\tempws", "Database Connections\\raster.sde\\RASTER.WRKSPTOMOSAIC", "LAST", "FIRST", "#", "#", "#", "0")

Environments

This tool does not use any geoprocessing environments

Licensing Information

ArcGIS for Desktop Basic: Yes
ArcGIS for Desktop Standard: Yes
ArcGIS for Desktop Advanced: Yes
3/4/2014