ST_Disjoint
Definition
ST_Disjoint takes two geometries and returns 1 (Oracle and SQLite) or t (PostgreSQL) if the intersection of two geometries produces an empty set; otherwise, it returns 0 (Oracle and SQLite) or f (PostgreSQL).
Syntax
Oracle and PostgreSQL
sde.st_disjoint (geometry1 sde.st_geometry, geometry2 sde.st_geometry)
SQLite
st_disjoint (geometry1 geometryblob, geometry2 geometryblob)
Return type
Boolean
Example
In this example, two tables are created (distribution_areas and factories), and values are inserted to each. Next, a buffer is created around the factories and st_disjoint is used to discover which factory buffers do not cross distribution areas.
You could use the ST_Intersects function instead in this query by equating the result of the function to 0, because ST_Intersects and ST_Disjoint return opposite results. The ST_Intersects function uses the spatial index when evaluating the query, whereas the ST_Disjoint function does not.
Oracle
--Create tables and insert values.
CREATE TABLE distribution_areas (
id integer,
areas sde.st_geometry
);
CREATE TABLE factories (
id integer,
loc sde.st_geometry
);
INSERT INTO distribution_areas (id, areas) VALUES (
1,
sde.st_geometry ('polygon ((20 30, 30 30, 30 40, 20 40, 20 30))', 4326)
);
INSERT INTO distribution_areas (id, areas) VALUES (
2,
sde.st_geometry ('polygon ((30 30, 30 50, 50 50, 50 30, 30 30))', 4326)
);
INSERT INTO distribution_areas (id, areas) VALUES (
3,
sde.st_geometry ('polygon ((40 40, 40 60, 60 60, 60 40, 40 40))', 4326)
);
INSERT INTO factories (id,loc) VALUES (
4,
sde.st_geometry ('point (60 60)', 4326)
);
INSERT INTO factories (id,loc) VALUES (
5,
sde.st_geometry ('point (30 30)', 4326)
);
--Buffer factories and find which buffers are separate from distribution areas.
SELECT da.id
FROM DISTRIBUTION_AREAS da, FACTORIES f
WHERE sde.st_disjoint ((sde.st_buffer (f.loc, .001)), da.areas) = 1;
PostgreSQL
--Create tables and insert values.
CREATE TABLE distribution_areas (
id serial,
areas sde.st_geometry
);
CREATE TABLE factories (
id serial,
loc sde.st_geometry
);
INSERT INTO distribution_areas (areas) VALUES (
sde.st_geometry ('polygon ((20 30, 30 30, 30 40, 20 40, 20 30))', 4326)
);
INSERT INTO distribution_areas (areas) VALUES (
sde.st_geometry ('polygon ((30 30, 30 50, 50 50, 50 30, 30 30))', 4326)
);
INSERT INTO distribution_areas (areas) VALUES (
sde.st_geometry ('polygon ((40 40, 40 60, 60 60, 60 40, 40 40))', 4326)
);
INSERT INTO factories (loc) VALUES (
sde.st_geometry ('point (60 60)', 4326)
);
INSERT INTO factories (loc) VALUES (
sde.st_geometry ('point (30 30)', 4326)
);
--Buffer factories and find which buffers are separate from distribution areas.
SELECT da.id
FROM distribution_areas da, factories f
WHERE sde.st_disjoint ((sde.st_buffer (f.loc, .001)), da.areas) = 't';
SQLite
--Create tables and insert values.
CREATE TABLE distribution_areas (
id integer primary key autoincrement not null
);
SELECT AddGeometryColumn (
NULL,
'distribution_areas',
'areas',
4326,
'polygon',
'xy',
'null'
);
CREATE TABLE factories (
id integer primary key autoincrement not null
);
SELECT AddGeometryColumn (
NULL,
'factories',
'loc',
4326,
'point',
'xy',
'null'
);
INSERT INTO distribution_areas (areas) VALUES (
st_geometry ('polygon ((20 30, 30 30, 30 40, 20 40, 20 30))', 4326)
);
INSERT INTO distribution_areas (areas) VALUES (
st_geometry ('polygon ((30 30, 30 50, 50 50, 50 30, 30 30))', 4326)
);
INSERT INTO distribution_areas (areas) VALUES (
st_geometry ('polygon ((40 40, 40 60, 60 60, 60 40, 40 40))', 4326)
);
INSERT INTO factories (loc) VALUES (
st_geometry ('point (60 60)', 4326)
);
INSERT INTO factories (loc) VALUES (
st_geometry ('point (30 30)', 4326)
);
--Buffer factories and find which buffers are separate from distribution areas.
SELECT da.id
FROM distribution_areas da, factories f
WHERE st_disjoint ((st_buffer (f.loc, .001)), da.areas) = 1;
id
1
2
3