Layer der nächsten Einrichtung erstellen (Network Analyst)
Zusammenfassung
Erstellt einen Netzwerkanalyse-Layer der nächsten Einrichtung und legt seine Analyseeigenschaften fest. Ein Netzwerkanalyse-Layer für die nächstgelegenen Einrichtung ist hilfreich, um die nächste Einrichtung oder die Einrichtungen zu einem Ereignis auf der Grundlage der angegebenen Netzwerkkosten zu bestimmen.
Verwendung
-
Nachdem Sie den Analyse-Layer mit diesem Werkzeug erstellt haben, können Sie diesem mithilfe des Werkzeugs Standorte hinzufügen Netzwerk-Analyseobjekte hinzufügen, die Analyse mithilfe des Werkzeugs Berechnen berechnen und die Ergebnisse mithilfe des Werkzeugs In Layer-Datei speichern auf einem Datenträger speichern.
-
Wenn Sie das Werkzeug in Geoverarbeitungsmodellen verwenden und das Modell als Werkzeug ausgeführt wird, muss der Ausgabenetzwerkanalyse-Layer als Modellparameter festgelegt werden. Andernfalls wird der Ausgabe-Layer nicht dem Inhaltsverzeichnis in ArcMap hinzugefügt.
Syntax
Parameter | Erläuterung | Datentyp |
in_network_dataset |
Das Netzwerk-Dataset, für das die Analyse der nächstgelegenen Einrichtung ausgeführt wird. | Network Dataset Layer |
out_network_analysis_layer |
Name des zu erstellenden Netzwerkanalyse-Layers für die nächstgelegene Einrichtung. | String |
impedance_attribute |
Das Kostenattribut, das in der Analyse als Impedanz verwendet wird. | String |
travel_from_to (optional) |
Gibt die Fahrtrichtung zwischen Einrichtungen und Ereignissen an.
Mithilfe dieser Option können in einem Netzwerk mit Beschränkungen für Einbahnstraßen und unterschiedlichen Impedanzen basierend auf der Fahrtrichtung verschiedene Einrichtungen gesucht werden. So kann eine Einrichtung zum Beispiel 10 Minuten Fahrzeit vom Ereignis entfernt sein, wenn die Fahrt vom Ereignis zur Einrichtung erfolgt, jedoch 15 Minuten Fahrzeit entfernt, wenn die Fahrt von der Einrichtung zum Ereignis erfolgt. Feuerwehren verwenden im Allgemeinen die Einstellung "TRAVEL_FROM", da es hier darauf ankommt, wie lange es dauert, von der Feuerwache (Einrichtung) zum Einsatzort (Ereignis) zu fahren. Ein Einzelhandelsgeschäft (Einrichtung) ist eher daran interessiert, wie lange die Käufer (Ereignisse) brauchen, um den Laden zu erreichen. Daher verwenden Läden für gewöhnlich die Option "TRAVEL_TO". | String |
default_cutoff (optional) |
Standardimpedanzwert, an dem die Suche nach Einrichtungen für ein gegebenes Ereignis beendet wird. Bei Verwendung der Option TRAVEL_TO kann der Standardwert durch Angabe des Grenzwertes für Ereignisse, bei Verwendung der Option TRAVEL_FROM durch Angabe des Grenzwertes für Einrichtungen überschrieben werden. | Double |
default_number_facilities_to_find (optional) |
Standardanzahl der nächsten Einrichtungen, die pro Ereignis gesucht werden sollen. Der Standard kann überschrieben werden, indem ein Wert für die Eigenschaft "TargetFacilityCount" der Ereignisse angegeben wird. | Long |
accumulate_attribute_name [accumulate_attribute_name,...] (optional) | Liste der Kostenattribute, die während der Analyse akkumuliert werden sollen. Diese Akkumulationsattribute dienen ausschließlich zu Referenzzwecken. Der Solver verwendet nur das mit dem Parameter "Impedanz-Attribut" angegebene Kostenattribut zum Berechnen der Route. Für jedes akkumulierte Kostenattribut wird den Routen, die vom Solver ausgegeben werden, eine Eigenschaft "Total_[Impedance]" hinzugefügt. | String |
UTurn_policy (optional) |
Die Wendenregel an Knoten. Das Zulassen von Wenden bedeutet, dass der Solver an einem Knoten wenden und auf der gleichen Straße wieder zurückfahren kann. Bei Knoten kann es sich um Straßenkreuzungen und Sackgassen handeln. Das heißt, manche Fahrzeuge können wenden, manche nicht. Aus diesem Grund gibt der Parameter "Wendenregel" implizit an, wie viele Kanten mit dem Knoten verbunden sind. Dies wird als Knotenvalenz bezeichnet. Die zulässigen Werte für diesen Parameter sind unten aufgelistet, gefolgt von einer Beschreibung ihrer Bedeutung hinsichtlich der Knotenvalenz.
Tipp: Wenn Sie eine genauer definierte Wendenregel benötigen, fügen Sie einen Evaluator für die globale Verzögerung bei Kantenübergängen zu einem Netzwerkkostenattribut hinzu, oder passen Sie dessen Einstellungen an. Gehen Sie bei der Konfiguration von U-förmigen Kantenübergängen besonders sorgfältig vor. Prüfen Sie ferner die Einstellung der CurbApproach-Eigenschaft Ihrer Netzwerkstandorte. | String |
restriction_attribute_name [restriction_attribute_name,...] (optional) |
Liste von Restriktionsattributen, die während der Analyse angewendet werden. | String |
hierarchy (optional) |
Der Parameter wird nicht verwenden, wenn für das Netzwerk-Dataset, das zum Ausführen der Analyse verwendet wird, kein Hierarchieattribut definiert wird. In solchen Fällen verwenden Sie "#" als Parameterwert. | Boolean |
hierarchy_settings (optional) |
Veraltet: Vor Version 10 konnten mit diesem Parameter die Hierarchiebereiche für die Analyse von den im Netzwerk-Dataset festgelegten Standard-Hierarchiebereichen geändert werden. In Version 10 wird dieser Parameter nicht mehr unterstützt und muss als leere Zeichenfolge angegeben werden. Wenn Sie die Hierarchiebereiche für Ihre Analyse ändern möchten, aktualisieren Sie die Standard-Hierarchiebereiche im Netzwerk-Dataset. | Network Analyst Hierarchy Settings |
output_path_shape (optional) | Gibt den Shape-Typ für die Routen-Features an, die von der Analyse ausgegeben werden.
Unabhängig vom ausgewählten Ausgabe-Shape-Typ wird die optimale Route immer anhand der Netzwerkimpedanz und nie anhand der Euklidischen Entfernung ermittelt. Dies bedeutet, dass sich nur die Routen-Shapes und nicht der zugrunde liegende Durchlauf des Netzwerks unterscheiden. | String |
time_of_day (optional) |
Gibt die Uhrzeit und das Datum für den Beginn oder das Ende der Routen an. Die Interpretation dieses Wertes hängt davon ab, ob "+++Tageszeit-Verwendung" auf START_TIME oder END_TIME festgelegt ist. Wenn Sie ein verkehrsbasiertes Impedanz-Attribut ausgewählt haben, wird die Lösung auf Grundlage des dynamischen Verkehrsaufkommens zu der hier angegeben Tageszeit generiert. Sie können ein Datum und eine Uhrzeit als 5/14/2012 10:30 AM angeben. Statt ein bestimmtes Datum zu verwenden, kann ein Wochentag mithilfe der folgenden Datumsangaben angegeben werden.
| Date |
time_of_day_usage (optional) |
Gibt an, ob der Wert des Parameters "+++Uhrzeit" die Ankunfts- oder Abfahrtzeit für die Route oder die Routen darstellt.
| String |
Codebeispiel
Ausführen des Werkzeugs, wenn nur die erforderlichen Parameter verwendet werden.
import arcpy
arcpy.env.workspace = "C:/ArcTutor/Network Analyst/Tutorial/SanFrancisco.gdb"
arcpy.na.MakeClosestFacilityLayer("Transportation/Streets_ND",
"ClosestFireStations","Minutes")
Ausführen des Werkzeugs unter Verwendung aller Parameter.
import arcpy
arcpy.env.workspace = "C:/ArcTutor/Network Analyst/Tutorial/SanFrancisco.gdb"
arcpy.na.MakeClosestFacilityLayer("Transportation/Streets_ND",
"ClosestHospitals","Minutes","TRAVEL_TO",5,3,
["Meters","Minutes"],"ALLOW_UTURNS",
["Oneway"],"USE_HIERARCHY","",
"TRUE_LINES_WITH_MEASURES")
Mit dem folgenden eigenständigen Python-Skript wird veranschaulicht, wie das Werkzeug "MakeClosestFacilityLayer" verwendet werden kann, um von den Ladenstandorten aus das nächst gelegene Lager zu ermitteln.
# Name: MakeClosestFacilityLayer_Workflow.py
# Description: Find the closest warehouse from the store locations and save the
# results to a layer file on disk.
# Requirements: Network Analyst Extension
#Import system modules
import arcpy
from arcpy import env
try:
#Check out the Network Analyst extension license
arcpy.CheckOutExtension("Network")
#Set environment settings
env.workspace = "C:/data/Paris.gdb"
env.overwriteOutput = True
#Set local variables
inNetworkDataset = "Transportation/ParisMultimodal_ND"
outNALayerName = "ClosestWarehouse"
impedanceAttribute = "Drivetime"
accumulateAttributeName = ["Meters"]
inFacilities = "Analysis/Warehouses"
inIncidents = "Analysis/Stores"
outLayerFile = "C:/data/output" + "/" + outNALayerName + ".lyr"
#Create a new closest facility analysis layer. Apart from finding the drive
#time to the closest warehouse, we also want to find the total distance. So
#we will accumulate the "Meters" impedance attribute.
outNALayer = arcpy.na.MakeClosestFacilityLayer(inNetworkDataset,outNALayerName,
impedanceAttribute,"TRAVEL_TO",
"",1, accumulateAttributeName,
"NO_UTURNS")
#Get the layer object from the result object. The closest facility layer can
#now be referenced using the layer object.
outNALayer = outNALayer.getOutput(0)
#Get the names of all the sublayers within the closest facility layer.
subLayerNames = arcpy.na.GetNAClassNames(outNALayer)
#Stores the layer names that we will use later
facilitiesLayerName = subLayerNames["Facilities"]
incidentsLayerName = subLayerNames["Incidents"]
#Load the warehouses as Facilities using the default field mappings and
#search tolerance
arcpy.na.AddLocations(outNALayer, facilitiesLayerName, inFacilities, "", "")
#Load the Stores as Incidents. Map the Name property from the NOM field
#using field mappings
fieldMappings = arcpy.na.NAClassFieldMappings(outNALayer, incidentsLayerName)
fieldMappings["Name"].mappedFieldName = "NOM"
arcpy.na.AddLocations(outNALayer, incidentsLayerName, inIncidents,
fieldMappings,"")
#Solve the closest facility layer
arcpy.na.Solve(outNALayer)
#Save the solved closest facility layer as a layer file on disk with
#relative paths
arcpy.management.SaveToLayerFile(outNALayer,outLayerFile,"RELATIVE")
print "Script completed successfully"
except Exception as e:
# If an error occurred, print line number and error message
import traceback, sys
tb = sys.exc_info()[2]
print "An error occured on line %i" % tb.tb_lineno
print str(e)